Coherent control of a few-channel hole type gatemon qubit
- URL: http://arxiv.org/abs/2312.06411v1
- Date: Mon, 11 Dec 2023 14:33:31 GMT
- Title: Coherent control of a few-channel hole type gatemon qubit
- Authors: Han Zheng, Luk Yi Cheung, Nikunj Sangwan, Artem Kononov, Roy Haller,
Joost Ridderbos, Carlo Ciaccia, Jann Hinnerk Ungerer, Ang Li, Erik P.A.M.
Bakkers, Andreas Baumgartner, Christian Sch\"onenberger
- Abstract summary: Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits.
In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire.
- Score: 7.283679827070781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gatemon qubits are the electrically tunable cousins of superconducting
transmon qubits. In this work, we demonstrate the full coherent control of a
gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the
longest coherence times in group IV material gatemons to date. The key to these
results is a high-quality Josephson junction obtained in a straightforward and
reproducible annealing technique. We demonstrate that the transport through the
narrow junctions is dominated by only two quantum channels, with transparencies
up to unity. This novel qubit platform holds great promise for quantum
information applications, not only because it incorporates technologically
relevant materials, but also because it provides new opportunities, like an
ultrastrong spin-orbit coupling in the few-channel regime of Josephson
junctions.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - A gate tunable transmon qubit in planar Ge [30.432877421232842]
Gate-tunable transmons (gatemons) employing semiconductor Josephson junctions have emerged as building blocks for hybrid quantum circuits.
We present a gatemon fabricated in planar Germanium.
We showcase the qubit tunability in a broad frequency range with resonator and two-tone spectroscopy.
arXiv Detail & Related papers (2024-03-25T13:52:05Z) - Generation of perfectly entangled two and three qubits states by
classical random interaction [0.0]
This study examines the possibility of finding perfect entanglers for a Hamiltonian.
In this study, we use a superconducting circuit that stands out from other quantum-computing devices.
Our scheme could contribute to quantum teleportation, quantum communication, and some other areas of quantum information processing.
arXiv Detail & Related papers (2022-12-06T16:27:58Z) - SWAP gate between a Majorana qubit and a parity-protected
superconducting qubit [0.0]
A parity-protected superconducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory.
This architecture combines fast gates, which can be realized with the superconducting qubit, with a topologically protected Majorana memory.
arXiv Detail & Related papers (2022-05-03T10:41:27Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Entangling transmons with low-frequency protected superconducting qubits [0.0]
We propose and study a scheme for entangling a tunable transmon with a Cooper-pair parity-protected qubit.
We show that non-computational states can mediate a two-qubit entangling gate that preserves the Cooper-pair parity independent of the detailed pulse sequence.
Our results suggest that standard high-precision gate calibration protocols could be repurposed for operating hybrid qubit devices.
arXiv Detail & Related papers (2022-03-08T19:00:01Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.