Revisiting Graph-Based Fraud Detection in Sight of Heterophily and Spectrum
- URL: http://arxiv.org/abs/2312.06441v3
- Date: Mon, 8 Jul 2024 06:54:37 GMT
- Title: Revisiting Graph-Based Fraud Detection in Sight of Heterophily and Spectrum
- Authors: Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Xibin Zhao, Hai Wan,
- Abstract summary: Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task.
This paper proposes a semi-supervised GNN-based fraud detector SEC-GFD.
The comprehensive experimental results on four real-world fraud detection datasets denote that SEC-GFD outperforms other competitive graph-based fraud detectors.
- Score: 26.62679288320554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks (GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into various mixed-frequency bands based on the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets denote that SEC-GFD outperforms other competitive graph-based fraud detectors. We release our code at https://github.com/Sunxkissed/SEC-GFD.
Related papers
- Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection [32.165578819142695]
We propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection.
We design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones.
Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance.
arXiv Detail & Related papers (2024-07-02T10:37:54Z) - Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
Graph anomaly detection (GAD) is a challenging binary classification problem.
Gallon neural networks (GNNs) benefit the classification of normals from aggregating homophilous neighbors.
We propose a framework to mitigate the effect of heterophilous neighbors and make them invariant.
arXiv Detail & Related papers (2024-01-25T13:07:34Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Graph Anomaly Detection with Unsupervised GNNs [19.772490600670363]
We design GLAM, an end-to-end graph-level anomaly detection model based on graph neural networks (GNNs)
We also propose a new pooling strategy for graph-level embedding, called MMD-pooling, that is geared toward detecting distribution anomalies which has not been considered before.
arXiv Detail & Related papers (2022-10-18T01:59:58Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Alleviating the Inconsistency Problem of Applying Graph Neural Network
to Fraud Detection [78.88163190021798]
We introduce a new GNN framework, $mathsfGraphConsis$, to tackle the inconsistency problem.
Empirical analysis on four datasets indicates the inconsistency problem is crucial in a fraud detection task.
We also released a GNN-based fraud detection toolbox with implementations of SOTA models.
arXiv Detail & Related papers (2020-05-01T21:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.