論文の概要: Gaussian Splatting SLAM
- arxiv url: http://arxiv.org/abs/2312.06741v1
- Date: Mon, 11 Dec 2023 18:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 18:21:47.414510
- Title: Gaussian Splatting SLAM
- Title(参考訳): ガウス散乱SLAM
- Authors: Hidenobu Matsuki, Riku Murai, Paul H.J. Kelly, Andrew J. Davison
- Abstract要約: 移動単眼カメラとRGB-Dカメラを用いて3次元ガウススプラッティングをインクリメンタルな3次元再構成に適用した。
3fpsでライブで動作するSLAM法は,ガウスを唯一の3次元表現として利用している。
- 参考スコア(独自算出の注目度): 17.90035087300551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first application of 3D Gaussian Splatting to incremental 3D
reconstruction using a single moving monocular or RGB-D camera. Our
Simultaneous Localisation and Mapping (SLAM) method, which runs live at 3fps,
utilises Gaussians as the only 3D representation, unifying the required
representation for accurate, efficient tracking, mapping, and high-quality
rendering. Several innovations are required to continuously reconstruct 3D
scenes with high fidelity from a live camera. First, to move beyond the
original 3DGS algorithm, which requires accurate poses from an offline
Structure from Motion (SfM) system, we formulate camera tracking for 3DGS using
direct optimisation against the 3D Gaussians, and show that this enables fast
and robust tracking with a wide basin of convergence. Second, by utilising the
explicit nature of the Gaussians, we introduce geometric verification and
regularisation to handle the ambiguities occurring in incremental 3D dense
reconstruction. Finally, we introduce a full SLAM system which not only
achieves state-of-the-art results in novel view synthesis and trajectory
estimation, but also reconstruction of tiny and even transparent objects.
- Abstract(参考訳): 移動単眼カメラとRGB-Dカメラを用いて3次元ガウススプラッティングをインクリメンタルな3次元再構成に適用した。
3fpsで動作する同時ローカライズ・マッピング(slam)法は,gaussianを唯一の3d表現として活用し,正確な,効率的なトラッキング,マッピング,高品質レンダリングのために必要な表現を統合する。
ライブカメラから高い忠実度で3dシーンを連続的に再構築するには、いくつかの革新が必要となる。
まず、オフラインのStructure from Motion (SfM)システムから正確なポーズを必要とする元の3DGSアルゴリズムを超えて、3Dガウスに対する直接最適化を用いて3DGSのカメラトラッキングを定式化し、より広範囲の収束で高速で堅牢なトラッキングを可能にすることを示す。
第二に,ガウスの明示的な性質を活かし,漸進的3次元濃密な再構築において生じる曖昧さに対処するために幾何学的検証と正規化を導入する。
最後に,新しい視点合成と軌道推定により最先端の成果を得られるだけでなく,小型で透明な物体の再構築も行うフルスラムシステムを提案する。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - NEDS-SLAM: A Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting [5.655341825527482]
NEDS-SLAMは3次元ガウス表現に基づく意味論的SLAMシステムである。
本研究では,事前学習したセグメンテーションヘッドからの誤推定の影響を低減するために,空間的に一貫性のある特徴融合モデルを提案する。
我々は,高次元意味的特徴をコンパクトな3次元ガウス表現に圧縮するために,軽量エンコーダデコーダを用いる。
論文 参考訳(メタデータ) (2024-03-18T11:31:03Z) - Compact 3D Gaussian Splatting For Dense Visual SLAM [32.37035997240123]
本稿では,ガウス楕円体の数とパラメータサイズを削減できるコンパクトな3次元ガウス格子SLAMシステムを提案する。
余剰楕円体を減らすために、スライドウィンドウベースのマスキング戦略が最初に提案されている。
本手法は,シーン表現の最先端(SOTA)品質を維持しつつ,高速なトレーニングとレンダリングの高速化を実現する。
論文 参考訳(メタデータ) (2024-03-17T15:41:35Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。