論文の概要: Privacy-Aware Energy Consumption Modeling of Connected Battery Electric
Vehicles using Federated Learning
- arxiv url: http://arxiv.org/abs/2312.07371v1
- Date: Tue, 12 Dec 2023 15:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 15:40:47.018862
- Title: Privacy-Aware Energy Consumption Modeling of Connected Battery Electric
Vehicles using Federated Learning
- Title(参考訳): フェデレーション学習を用いた電気自動車のプライバシ・アウェアエネルギー消費モデル
- Authors: Sen Yan, Hongyuan Fang, Ji Li, Tomas Ward, Noel O'Connor, Mingming Liu
- Abstract要約: バッテリー電気自動車(BEV)は、大気汚染を減らす可能性から、現代都市ではますます重要になっている。
データプライバシに対する大衆の認識が高まるにつれて、BEVエネルギー消費モデリングの文脈でデータプライバシを保護するアプローチを採用することが不可欠である。
本研究は,ユーザプライバシを維持しつつ,BEVのエネルギー消費予測を改善するために,フェデレートラーニング(FL)手法を用いることの可能性を検討する。
- 参考スコア(独自算出の注目度): 4.68055125124498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Battery Electric Vehicles (BEVs) are increasingly significant in modern
cities due to their potential to reduce air pollution. Precise and real-time
estimation of energy consumption for them is imperative for effective itinerary
planning and optimizing vehicle systems, which can reduce driving range anxiety
and decrease energy costs. As public awareness of data privacy increases,
adopting approaches that safeguard data privacy in the context of BEV energy
consumption modeling is crucial. Federated Learning (FL) is a promising
solution mitigating the risk of exposing sensitive information to third parties
by allowing local data to remain on devices and only sharing model updates with
a central server. Our work investigates the potential of using FL methods, such
as FedAvg, and FedPer, to improve BEV energy consumption prediction while
maintaining user privacy. We conducted experiments using data from 10 BEVs
under simulated real-world driving conditions. Our results demonstrate that the
FedAvg-LSTM model achieved a reduction of up to 67.84\% in the MAE value of the
prediction results. Furthermore, we explored various real-world scenarios and
discussed how FL methods can be employed in those cases. Our findings show that
FL methods can effectively improve the performance of BEV energy consumption
prediction while maintaining user privacy.
- Abstract(参考訳): バッテリー電気自動車(BEV)は、大気汚染を減らす可能性から、現代都市ではますます重要になっている。
エネルギー消費の高精度かつリアルタイムな推定は、走行距離の不安を低減し、エネルギーコストを削減できる効率的な反復計画および車両システムの最適化に不可欠である。
データプライバシに対する大衆の認識が高まるにつれて、BEVエネルギー消費モデリングの文脈でデータプライバシを保護するアプローチを採用することが不可欠である。
Federated Learning(FL)は、デバイス上にローカルデータを保持し、中央サーバとモデルアップデートを共有することで、サードパーティに機密情報を暴露するリスクを軽減する、有望なソリューションである。
本研究は,ユーザプライバシを維持しつつ,BEVのエネルギー消費予測を改善するために,FedAvgやFedPerといったFL手法を用いることの可能性を検討する。
実世界の運転条件を模擬した10台のBEVのデータを用いて実験を行った。
その結果,FedAvg-LSTMモデルでは予測結果のMAE値が67.84 %まで低下した。
さらに,様々な実世界のシナリオを考察し,それらの場合におけるflメソッドの適用方法について論じた。
その結果,fl手法はユーザのプライバシを維持しつつ,bevエネルギー消費予測の性能を効果的に向上できることがわかった。
関連論文リスト
- TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
本稿では,エネルギー効率のよいプライバシ保護型小型機械学習(MLTiny)方式としてスプリットラーニング(SL)を導入する。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
本稿では,モデル不確実性を伴う確率的ニューラルネットワークを用いた運転行動中心のEVエネルギー消費推定モデルを提案する。
モデル不確実性をニューラルネットワークに組み込むことで、モンテカルロを用いたニューラルネットワークのアンサンブルを作成しました。
提案手法は, 平均絶対誤差9.3%を達成し, 既存のEVエネルギー消費モデルよりも精度が高い。
論文 参考訳(メタデータ) (2023-07-02T04:30:20Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid
Electric Vehicles [2.147325264113341]
本稿では,バッテリエネルギー消費をモデル化するための機械学習手法を提案する。
予測の不確実性を低減させることで、この手法は車両の性能に対する信頼を高めるのに役立つ。
従来の手法に比べて,予測の不確実性や精度が向上した。
論文 参考訳(メタデータ) (2022-04-27T10:29:38Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
エネルギー需要予測は、需要と供給のバランスを保ち、電力網の安定的な負荷を維持するためにエネルギー産業内で実施される重要な課題である。
供給が信頼性の低い再生可能エネルギー生成へと移行するにつれ、スマートメーターはこれらの予測タスクを支援する上で不可欠な要素であることが証明される。
しかし、プライバシーを意識した消費者は、詳細な消費データへの侵入を恐れている。
論文 参考訳(メタデータ) (2021-05-27T17:33:09Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - Convolutional Neural Network-Bagged Decision Tree: A hybrid approach to
reduce electric vehicle's driver's range anxiety by estimating energy
consumption in real-time [9.475039534437332]
畳み込みニューラルネットワーク(CNN)を用いてエネルギー消費量を推定するハイブリッドCNN-BDT手法が開発されている。
BDT (Bagged Decision Tree) は推定値を微調整するために用いられる。
既存の手法と比較すると、開発手法は最低で0.14の絶対エネルギー偏差でより良い推定値を提供する。
論文 参考訳(メタデータ) (2020-08-31T12:45:15Z) - Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle
Transit Fleets [7.2775693810940565]
公共交通機関は電気自動車(EV)による燃費削減を目指している
EVの先行コストが高いため、ほとんどの機関は内燃機関と電気自動車の混成車しか手に入らない。
混合車両輸送車両における経路レベルのエネルギー利用に関するデータ駆動予測のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-04-10T16:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。