論文の概要: Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid
Electric Vehicles
- arxiv url: http://arxiv.org/abs/2204.12825v2
- Date: Mon, 17 Apr 2023 10:20:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 00:53:41.345288
- Title: Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid
Electric Vehicles
- Title(参考訳): ハイブリッド電気自動車の電池消費予測の不確かさ
- Authors: Jihed Khiari, Cristina Olaverri-Monreal
- Abstract要約: 本稿では,バッテリエネルギー消費をモデル化するための機械学習手法を提案する。
予測の不確実性を低減させることで、この手法は車両の性能に対する信頼を高めるのに役立つ。
従来の手法に比べて,予測の不確実性や精度が向上した。
- 参考スコア(独自算出の注目度): 2.147325264113341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The usability of vehicles is highly dependent on their energy consumption. In
particular, one of the main factors hindering the mass adoption of electric
(EV), hybrid (HEV), and plug-in hybrid (PHEV) vehicles is range anxiety, which
occurs when a driver is uncertain about the availability of energy for a given
trip. To tackle this problem, we propose a machine learning approach for
modeling the battery energy consumption. By reducing predictive uncertainty,
this method can help increase trust in the vehicle's performance and thus boost
its usability. Most related work focuses on physical and/or chemical models of
the battery that affect the energy consumption. We propose a data-driven
approach which relies on real-world datasets including battery related
attributes. Our approach showed an improvement in terms of predictive
uncertainty as well as in accuracy compared to traditional methods.
- Abstract(参考訳): 自動車の使い勝手はエネルギー消費に大きく依存している。
特に、電気(EV)、ハイブリッド(HEV)、プラグインハイブリッド(PHEV)車両の大量導入を妨げる主な要因の1つは、走行時のエネルギーの可利用性について不確実な場合に発生する範囲不安である。
そこで本研究では,バッテリエネルギー消費をモデル化する機械学習手法を提案する。
予測の不確実性を減らすことにより、この手法は車両の性能に対する信頼性を高め、使用性を高めることができる。
ほとんどの関連する研究は、エネルギー消費に影響を与える電池の物理モデルや化学モデルに焦点を当てている。
我々は,バッテリ関連属性を含む実世界のデータセットに依存するデータ駆動アプローチを提案する。
従来の手法に比べて,予測の不確実性や精度が向上した。
関連論文リスト
- Privacy-Aware Energy Consumption Modeling of Connected Battery Electric
Vehicles using Federated Learning [4.68055125124498]
バッテリー電気自動車(BEV)は、大気汚染を減らす可能性から、現代都市ではますます重要になっている。
データプライバシに対する大衆の認識が高まるにつれて、BEVエネルギー消費モデリングの文脈でデータプライバシを保護するアプローチを採用することが不可欠である。
本研究は,ユーザプライバシを維持しつつ,BEVのエネルギー消費予測を改善するために,フェデレートラーニング(FL)手法を用いることの可能性を検討する。
論文 参考訳(メタデータ) (2023-12-12T15:40:38Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
本稿では,モデル不確実性を伴う確率的ニューラルネットワークを用いた運転行動中心のEVエネルギー消費推定モデルを提案する。
モデル不確実性をニューラルネットワークに組み込むことで、モンテカルロを用いたニューラルネットワークのアンサンブルを作成しました。
提案手法は, 平均絶対誤差9.3%を達成し, 既存のEVエネルギー消費モデルよりも精度が高い。
論文 参考訳(メタデータ) (2023-07-02T04:30:20Z) - Uncertainty-Aware Vehicle Energy Efficiency Prediction using an Ensemble
of Neural Networks [2.147325264113341]
交通部門は温室効果ガス排出量の約25%を占めている。
エネルギー効率に影響を与える要因は、車両の種類、環境、運転者行動、気象条件である。
本研究では,予測不確実性を低減し,その不確実性を評価するために,深層ニューラルネットワーク(ENN)に基づくアンサンブル学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-14T11:51:26Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
深層ニューラルネットワークを用いた時系列バッテリデータ拡張手法を提案する。
あるモデルはバッテリ充電プロファイルを生成し、別のモデルはバッテリ放電プロファイルを生成する。
その結果,バッテリーデータに制限がある場合の問題点を解消するために,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-05T16:17:19Z) - Predicting vehicles parking behaviour in shared premises for aggregated
EV electricity demand response programs [3.448121798373834]
本稿では,共有駐車場における駐車時間推定手法を提案する。
我々は、駐車イベントの期間を予測するために、予測問題を教師付き機械学習タスクとして定式化する。
この予測期間は、ピーク時の電力需要を減少させる期間にわたって電力を割り当てるエネルギー管理システムに供給される。
論文 参考訳(メタデータ) (2021-09-20T16:33:17Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。