Three-dimensional bound states of cylindrical quantum heterostructures
with position-dependent mass carriers
- URL: http://arxiv.org/abs/2312.07477v1
- Date: Tue, 12 Dec 2023 18:07:54 GMT
- Title: Three-dimensional bound states of cylindrical quantum heterostructures
with position-dependent mass carriers
- Authors: H. R. Christiansen and R. M. Lima
- Abstract summary: We consider effective electronic carriers with position-dependent mass for five different kinetic-operator orderings.
We obtain the bound energy eigenstates of particles in a three-dimensional cylindrical nanowire under a confining hyperbolic potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a comprehensive spectral analysis of cylindrical quantum
heterostructures by considering effective electronic carriers with
position-dependent mass for five different kinetic-operator orderings. We
obtain the bound energy eigenstates of particles in a three-dimensional
cylindrical nanowire under a confining hyperbolic potential with both open and
closed boundary conditions in the radial and the axial directions. In the
present model we consider carriers with continuous mass distributions within
the dot with abrupt mass discontinuities at the barriers, moving in a quantum
dot that connects different substances. Continuity of mass and potential at the
interfaces with the external layers result as a particular case. Our approach
is mostly analytical and allows a precise comparison among von Roos ordering
classes.
Related papers
- Fluctuation-induced Forces on Nanospheres in External Fields [0.0]
We analyze the radiative forces between two nanospheres mediated via the quantum and thermal fluctuations of the electromagnetic field in the presence of an external drive.
We demonstrate that an external squeezed vacuum state creates similar potentials to a laser, despite its zero average intensity.
Considering the nanospheres trapped by optical tweezers, we examine the total interparticle potential as a function of various experimentally relevant parameters.
arXiv Detail & Related papers (2023-11-17T12:51:19Z) - Collective scattering in lattice-trapped Sr atoms via dipole-dipole
interactions [0.0]
We investigate, based on the coupled dipole model, collective properties of dense Sr ensembles trapped in a 3D optical lattice.
Results offer the understanding of collective behaviors of lattice-trapped ensembles with an atom number equivalent to the experimental scale.
arXiv Detail & Related papers (2023-06-16T16:16:51Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Interacting bosons in a triple well: Preface of many-body quantum chaos [0.0]
We investigate the onset of quantum chaos in a triple-well model that moves away from integrability as its potential gets tilted.
Even in its deepest chaotic regime, the system presents features reminiscent of integrability.
arXiv Detail & Related papers (2021-11-26T19:00:03Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Geometric Quantum Information Structure in Quantum Fields and their
Lattice Simulation [0.0]
An upper limit to distillable entanglement has an exponential decay defined by a geometric decay constant.
When regulated at short distances with a spatial lattice, this entanglement abruptly vanishes beyond a dimensionless separation.
We highlight potential impacts of the distillable entanglement structure on effective field theories, lattice QCD calculations and future quantum simulations.
arXiv Detail & Related papers (2020-08-09T04:26:49Z) - Tensor monopoles and negative magnetoresistance effect in optical
lattices [3.2102885245931847]
We propose a kind of four-dimensional (4D) Hamiltonians, which host tensor monopoles related to quantum metric tensor in even dimensions.
By fixing the momentum along one of the dimensions, it can be reduced to an effective three-dimensional model manifesting with a nontrivial chiral insulator phase.
We show that the quantum metric tensor and Berry curvature can be detected by applying an external drive in the optical lattices.
arXiv Detail & Related papers (2020-07-04T13:25:31Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.