論文の概要: ConvD: Attention Enhanced Dynamic Convolutional Embeddings for Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2312.07589v2
- Date: Thu, 12 Jun 2025 07:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:21.964254
- Title: ConvD: Attention Enhanced Dynamic Convolutional Embeddings for Knowledge Graph Completion
- Title(参考訳): ConvD:知識グラフ補完のための動的畳み込みの注意力強化
- Authors: Wenbin Guo, Zhao Li, Xin Wang, Zirui Chen, Jun Zhao, Jianxin Li, Ye Yuan,
- Abstract要約: 本稿では,複数の内部畳み込みカーネルに関係埋め込みを組み込む新しい動的畳み込み埋め込みモデルであるConvDを紹介する。
各種データセットを用いた実験により,提案手法は最先端のベースライン法よりも一貫して優れていることがわかった。
- 参考スコア(独自算出の注目度): 23.857256089000032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs often suffer from incompleteness issues, which can be alleviated through information completion. However, current state-of-the-art deep knowledge convolutional embedding models rely on external convolution kernels and conventional convolution processes, which limits the feature interaction capability of the model. This paper introduces a novel dynamic convolutional embedding model, ConvD, which directly reshapes relation embeddings into multiple internal convolution kernels. This approach effectively enhances the feature interactions between relation embeddings and entity embeddings. Simultaneously, we incorporate a priori knowledge-optimized attention mechanism that assigns different contribution weight coefficients to the multiple relation convolution kernels in dynamic convolution, further boosting the expressive power of the model. Extensive experiments on various datasets show that our proposed model consistently outperforms the state-of-the-art baseline methods, with average improvements ranging from 3.28% to 14.69% across all model evaluation metrics, while the number of parameters is reduced by 50.66% to 85.40% compared to other state-of-the-art models.
- Abstract(参考訳): 知識グラフはしばしば不完全性の問題に悩まされ、情報補完によって緩和される。
しかし、現在の最先端の深い知識の畳み込み埋め込みモデルは、外部の畳み込みカーネルと従来の畳み込みプロセスに依存しており、モデルの特徴的相互作用能力を制限している。
本稿では,複数の内部畳み込みカーネルに関係埋め込みを組み込む新しい動的畳み込み埋め込みモデルであるConvDを紹介する。
このアプローチは、関係埋め込みとエンティティ埋め込みの間の機能相互作用を効果的に強化する。
同時に、動的畳み込みにおいて複数の関係畳み込みカーネルに異なる寄与重み係数を割り当てる事前知識最適化注意機構を導入し、モデルの表現力をさらに高める。
各種データセットに対する大規模な実験の結果,提案モデルでは,各モデル評価指標の平均改善率は3.28%から14.69%,パラメータの減少率は50.66%から85.40%であった。
関連論文リスト
- Information-theoretic Quantification of High-order Feature Effects in Classification Problems [0.19791587637442676]
特徴重要度(Hi-Fi)法における高次相互作用の情報理論拡張について述べる。
私たちのフレームワークは、機能のコントリビューションをユニークでシナジスティックで冗長なコンポーネントに分解します。
その結果,提案した推定器は理論的および予測された結果を正確に復元することがわかった。
論文 参考訳(メタデータ) (2025-07-06T11:50:30Z) - Flow-based generative models as iterative algorithms in probability space [18.701755188870823]
フローベースの生成モデルは、正確な推定、効率的なサンプリング、決定論的変換を提供する。
本チュートリアルでは,フローベース生成モデルのための直感的な数学的枠組みを提案する。
我々は,信号処理や機械学習にフローベース生成モデルを効果的に適用するために必要なツールを研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-02-19T03:09:18Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
より広い範囲のプロセスをサポートすることで拡散モデルを強化する新しいフレームワークを提案する。
また,前処理を学習するための新しいパラメータ化手法を提案する。
結果はNFDMの汎用性と幅広い応用の可能性を評価する。
論文 参考訳(メタデータ) (2024-04-19T15:10:54Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
我々は、一般の2階粒子モデルにおけるデータ駆動的な発見に焦点を当てる。
本稿では、2つの実世界の魚の動きデータセットのモデリングへの応用について述べる。
論文 参考訳(メタデータ) (2023-11-01T23:45:15Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
本稿では,連続データのためのテンソルネットワーク生成モデルについて紹介する。
我々は、このモデルの性能を、いくつかの合成および実世界のデータセットでベンチマークする。
本手法は, 急速に成長する生成学習分野において, 量子インスピレーション法の有効性を示す重要な理論的, 実証的な証拠を与える。
論文 参考訳(メタデータ) (2023-10-31T14:37:37Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
テンソル分解は マルチウェイデータ解析の 重要なツールです
動的EMbedIngs fOr Dynamic Algorithm dEcomposition (DEMOTE)を提案する。
シミュレーション研究と実世界の応用の両方において,本手法の利点を示す。
論文 参考訳(メタデータ) (2023-10-30T15:49:45Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph
Completion [1.5576879053213302]
この研究は、計算の複雑さが低く、モデル改善の可能性が高いため、ProjE KGEを改善する。
FB15KやWN18のようなベンチマーク知識グラフ(KG)の実験結果から、提案手法はエンティティ予測タスクにおける最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-15T18:18:05Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
本研究では,対話対象の連続時間力学の不確実性を考慮したモデリングを初めて行った。
我々のモデルは、独立力学と信頼性のある不確実性推定との相互作用の両方を推測する。
論文 参考訳(メタデータ) (2022-05-24T08:36:25Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Self-attention Presents Low-dimensional Knowledge Graph Embeddings for
Link Prediction [6.789370732159177]
セルフアテンションは、エンティティとリレーションにクエリ依存のプロジェクションを適用するための鍵である。
我々のモデルは、最新の3つの最先端の競合製品よりも好意的に、あるいは優れたパフォーマンスを達成しています。
論文 参考訳(メタデータ) (2021-12-20T16:11:01Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Kernel-Based Models for Influence Maximization on Graphs based on
Gaussian Process Variance Minimization [9.357483974291899]
グラフ上の新しい影響モデル(IM)の導入と検討を行う。
データ駆動アプローチは、このIMモデルの適切なカーネルを決定するために適用することができる。
この分野でコストのかかるモンテカルロシミュレーションに依存するモデルと比較して、我々のモデルはシンプルでコスト効率のよい更新戦略を可能にする。
論文 参考訳(メタデータ) (2021-03-02T08:55:34Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。