The discrete adiabatic quantum linear system solver has lower constant factors than the randomized adiabatic solver
- URL: http://arxiv.org/abs/2312.07690v2
- Date: Tue, 23 Apr 2024 05:20:32 GMT
- Title: The discrete adiabatic quantum linear system solver has lower constant factors than the randomized adiabatic solver
- Authors: Pedro C. S. Costa, Dong An, Ryan Babbush, Dominic Berry,
- Abstract summary: We show that an explicit constant factor for an upper bound on the complexity is far more efficient than might naively be expected from the upper bound.
In particular, it is over an order of magnitude more efficient than using a randomised approach from [arXiv:2305.11352] that claimed to be more efficient.
- Score: 2.350508194508073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The solution of linear systems of equations is the basis of many other quantum algorithms, and recent results provided an algorithm with optimal scaling in both the condition number $\kappa$ and the allowable error $\epsilon$ [PRX Quantum \textbf{3}, 0403003 (2022)]. That work was based on the discrete adiabatic theorem, and worked out an explicit constant factor for an upper bound on the complexity. Here we show via numerical testing on random matrices that the constant factor is in practice about 1,500 times smaller than the upper bound found numerically in the previous results. That means that this approach is far more efficient than might naively be expected from the upper bound. In particular, it is over an order of magnitude more efficient than using a randomised approach from [arXiv:2305.11352] that claimed to be more efficient.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
We present a quantum algorithm for a non-linear differential equation of the form $fracd|urangledt.
We also introduce a classical algorithm based on the Euler method allowing comparably scaling to the quantum algorithm in a restricted case.
arXiv Detail & Related papers (2024-07-10T14:08:58Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Quantum Sparse Coding [5.130440339897477]
We develop a quantum-inspired algorithm for sparse coding.
The emergence of quantum computers and Ising machines can potentially lead to more accurate estimations.
We conduct numerical experiments with simulated data on Lightr's quantum-inspired digital platform.
arXiv Detail & Related papers (2022-09-08T13:00:30Z) - Optimal scaling quantum linear systems solver via discrete adiabatic
theorem [0.9846257338039974]
We develop a quantum algorithm for solving linear systems that is discreteally optimal.
Compared to existing suboptimal methods, our algorithm is simpler and easier to implement.
arXiv Detail & Related papers (2021-11-16T00:21:37Z) - Quantum and Randomised Algorithms for Non-linearity Estimation [0.5584060970507505]
Non-linearity of a function indicates how far it is from any linear function.
We design highly efficient quantum and randomised algorithms to approximate the non-linearity additive error.
arXiv Detail & Related papers (2021-03-14T14:13:50Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.