Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Inspired Method
- URL: http://arxiv.org/abs/2312.07691v3
- Date: Tue, 25 Mar 2025 21:43:57 GMT
- Title: Unleashed from Constrained Optimization: Quantum Computing for Quantum Chemistry Employing Generator Coordinate Inspired Method
- Authors: Muqing Zheng, Bo Peng, Ang Li, Xiu Yang, Karol Kowalski,
- Abstract summary: We introduce an adaptive scheme that robustly constructs the many-body basis sets from a pool of the Unitary Coupled Cluster excitation generators.<n>This scheme supports the development of a hierarchical ADAPT quantum-classical strategy, enabling a balanced interplay between subspace expansion and ansatz optimization.
- Score: 9.95432381301196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum-classical approaches offer potential solutions to quantum chemistry problems, yet they often manifest as constrained optimization problems. Here, we explore the interconnection between constrained optimization and generalized eigenvalue problems through the Unitary Coupled Cluster (UCC) excitation generators. Inspired by the generator coordinate method, we employ these UCC excitation generators to construct non-orthogonal, overcomplete many-body bases, projecting the system Hamiltonian into an effective Hamiltonian, which bypasses issues such as barren plateaus that heuristic numerical minimizers often encountered in standard variational quantum eigensolver (VQE). Diverging from conventional quantum subspace expansion methods, we introduce an adaptive scheme that robustly constructs the many-body basis sets from a pool of the UCC excitation generators. This scheme supports the development of a hierarchical ADAPT quantum-classical strategy, enabling a balanced interplay between subspace expansion and ansatz optimization to address complex, strongly correlated quantum chemical systems cost-effectively, setting the stage for more advanced quantum simulations in chemistry.
Related papers
- Generative quantum combinatorial optimization by means of a novel conditional generative quantum eigensolver [1.4769913341588448]
We introduce conditional Generative Quantum Eigensolver (conditional-GQE), a context-aware quantum circuit generator powered by an encoder-decoder Transformer.
We train our generator for solving problems with up to 10 qubits, exhibiting nearly perfect performance on new problems.
arXiv Detail & Related papers (2025-01-28T14:35:46Z) - Solving Constrained Optimization Problems Using Hybrid Qubit-Qumode Quantum Devices [7.954263125127824]
We show how to solve Quadratic Unconstrained Binary Optimization problems using hybrid qubit$qux2014$ devices.
The potential of hybrid quantum computers to tackle complex optimization problems in both academia and industry is highlighted.
arXiv Detail & Related papers (2025-01-20T20:40:58Z) - Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Simulating electronic structure on bosonic quantum computers [34.84696943963362]
We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices.
This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Formulation of the Electric Vehicle Charging and Routing Problem for a
Hybrid Quantum-Classical Search Space Reduction Heuristic [0.0]
We show how to exploit multilevel carriers of quantum information -- qudits -- for the construction of constrained quantum optimization algorithms.
We propose a hybrid classical quantum strategy that allows us to sample constrained solutions while greatly reducing the search space of the problem.
arXiv Detail & Related papers (2023-06-07T13:16:15Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
We use the HHL algorithm to prepare excited interior eigenstates of physical Hamiltonians in a variational and targeted manner.
This is enabled by the efficient computation of the expectation values of inverse Hamiltonians on quantum computers.
We detail implementations of this scheme for both fault-tolerant and near-term quantum computers.
arXiv Detail & Related papers (2023-02-13T19:01:02Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Say NO to Optimization: A Non-Orthogonal Quantum Eigensolver [0.0]
A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers.
We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans"atze.
arXiv Detail & Related papers (2022-05-18T16:20:36Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Reduced Density Matrix Sampling: Self-consistent Embedding and
Multiscale Electronic Structure on Current Generation Quantum Computers [1.3488660476261511]
We investigate fully self-consistent multiscale quantum-classical algorithms on current generation superconducting quantum computers.
We show that these self-consistent algorithms are indeed highly robust, even in the presence of significant noises on quantum hardware.
arXiv Detail & Related papers (2021-04-12T14:57:51Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.