論文の概要: GP+: A Python Library for Kernel-based learning via Gaussian Processes
- arxiv url: http://arxiv.org/abs/2312.07694v2
- Date: Tue, 4 Jun 2024 19:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 03:55:26.080196
- Title: GP+: A Python Library for Kernel-based learning via Gaussian Processes
- Title(参考訳): GP+:ガウスプロセスによるカーネルベースの学習のためのPythonライブラリ
- Authors: Amin Yousefpour, Zahra Zanjani Foumani, Mehdi Shishehbor, Carlos Mora, Ramin Bostanabad,
- Abstract要約: ガウス過程(GP)を通したカーネルベースの学習用オープンソースライブラリGP+を紹介する。
GP+はPyTorch上に構築されており、確率的学習と推論のためのユーザフレンドリでオブジェクト指向のツールを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce GP+, an open-source library for kernel-based learning via Gaussian processes (GPs) which are powerful statistical models that are completely characterized by their parametric covariance and mean functions. GP+ is built on PyTorch and provides a user-friendly and object-oriented tool for probabilistic learning and inference. As we demonstrate with a host of examples, GP+ has a few unique advantages over other GP modeling libraries. We achieve these advantages primarily by integrating nonlinear manifold learning techniques with GPs' covariance and mean functions. As part of introducing GP+, in this paper we also make methodological contributions that (1) enable probabilistic data fusion and inverse parameter estimation, and (2) equip GPs with parsimonious parametric mean functions which span mixed feature spaces that have both categorical and quantitative variables. We demonstrate the impact of these contributions in the context of Bayesian optimization, multi-fidelity modeling, sensitivity analysis, and calibration of computer models.
- Abstract(参考訳): 本稿では,そのパラメトリックな共分散と平均関数によって完全に特徴付けられる強力な統計モデルであるガウス過程(GP)を用いたカーネルベース学習のためのオープンソースライブラリGP+を紹介する。
GP+はPyTorch上に構築されており、確率的学習と推論のためのユーザフレンドリでオブジェクト指向のツールを提供する。
一連の例で示すように、GP+は他のGPモデリングライブラリに対していくつかのユニークな利点がある。
これらの利点は、主に非線形多様体学習技術とGPの共分散と平均関数を統合することで達成される。
GP+の導入の一環として,(1)確率的データ融合と逆パラメータ推定を可能にする手法や,(2)カテゴリー変数と定量的変数の両方を持つ混合特徴空間にまたがる擬似パラメトリック平均関数を具備する手法も提案する。
本稿では,ベイズ最適化,マルチ忠実度モデリング,感度解析,コンピュータモデルの校正といった文脈におけるこれらの貢献の影響を実証する。
関連論文リスト
- A New Reliable & Parsimonious Learning Strategy Comprising Two Layers of Gaussian Processes, to Address Inhomogeneous Empirical Correlation Structures [0.138120109831448]
利用可能なデータの相関構造における不均一性に対処しながら,変数のペア間の機能的関係を学習するための新しい戦略を提案する。
探索関数を非定常ガウス過程(GP)の標本関数としてモデル化し、他の複数のGP内にネストする。
私たちはこの新しい学習戦略を実際のデータセットで説明します。
論文 参考訳(メタデータ) (2024-04-18T19:21:28Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
GPの非パラメトリックプロセス畳み込み定式化を導入し,機能サンプリング手法を用いて弱点を緩和する。
古典的ディープGPモデルの代替となるこれらの非パラメトリック畳み込みの合成を提案する。
論文 参考訳(メタデータ) (2022-06-17T19:03:04Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
GPに基づく逐次ブラックボックス最適化は,複数の評価ステップの候補解に固執することで効率よく行うことができることを示す。
GP-UCB と GP-EI の2つのよく確立されたGP-Opt アルゴリズムを改良し,バッチ化された GP-Opt の規則を適応させる。
論文 参考訳(メタデータ) (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
ガウス過程(GP)は、機械学習や統計学において強力なモデルを構築するために頻繁に用いられる。
本稿では,2重推定器による確率と大規模データセットの正確な推測と計算的ゲインを提供する擬似マージナル(PM)方式を提案する。
論文 参考訳(メタデータ) (2021-03-04T20:48:29Z) - Latent Map Gaussian Processes for Mixed Variable Metamodeling [0.0]
GPの魅力的な特性を継承するが、混合データにも適用できる潜在写像ガウス過程(LMGP)を導入する。
LMGPは可変長入力を処理でき、定性的入力が応答にどのように影響するか、相互に相互作用するかについての洞察を提供する。
また, LMGPのニューラルネットワーク解釈を行い, 先行潜時表現が性能に与える影響について検討する。
論文 参考訳(メタデータ) (2021-02-07T22:21:53Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
ガウス過程(GP)を用いたマルチチャネルデータモデリングのためのPythonパッケージMOGPTKを提案する。
このツールキットの目的は、研究者、データサイエンティスト、実践者にもMOGP(multi-output GP)モデルを利用できるようにすることである。
論文 参考訳(メタデータ) (2020-02-09T23:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。