論文の概要: A New Reliable & Parsimonious Learning Strategy Comprising Two Layers of Gaussian Processes, to Address Inhomogeneous Empirical Correlation Structures
- arxiv url: http://arxiv.org/abs/2404.12478v1
- Date: Thu, 18 Apr 2024 19:21:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:54:13.337970
- Title: A New Reliable & Parsimonious Learning Strategy Comprising Two Layers of Gaussian Processes, to Address Inhomogeneous Empirical Correlation Structures
- Title(参考訳): 不均質な経験的相関構造に対処するガウス過程の2つの層からなる信頼性とパシモニアスな新しい学習戦略
- Authors: Gargi Roy, Dalia Chakrabarty,
- Abstract要約: 利用可能なデータの相関構造における不均一性に対処しながら,変数のペア間の機能的関係を学習するための新しい戦略を提案する。
探索関数を非定常ガウス過程(GP)の標本関数としてモデル化し、他の複数のGP内にネストする。
私たちはこの新しい学習戦略を実際のデータセットで説明します。
- 参考スコア(独自算出の注目度): 0.138120109831448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new strategy for learning the functional relation between a pair of variables, while addressing inhomogeneities in the correlation structure of the available data, by modelling the sought function as a sample function of a non-stationary Gaussian Process (GP), that nests within itself multiple other GPs, each of which we prove can be stationary, thereby establishing sufficiency of two GP layers. In fact, a non-stationary kernel is envisaged, with each hyperparameter set as dependent on the sample function drawn from the outer non-stationary GP, such that a new sample function is drawn at every pair of input values at which the kernel is computed. However, such a model cannot be implemented, and we substitute this by recalling that the average effect of drawing different sample functions from a given GP is equivalent to that of drawing a sample function from each of a set of GPs that are rendered different, as updated during the equilibrium stage of the undertaken inference (via MCMC). The kernel is fully non-parametric, and it suffices to learn one hyperparameter per layer of GP, for each dimension of the input variable. We illustrate this new learning strategy on a real dataset.
- Abstract(参考訳): 非定常ガウス過程 (GP) のサンプル関数として探索関数をモデル化することにより、利用可能なデータの相関構造における不均一性に対処しながら、変数間の関数関係を学習する新しい戦略を提案する。
実際、非定常カーネルを想定し、各ハイパーパラメータは外部定常GPから引き出されたサンプル関数に依存するように設定され、カーネルが計算される全ての入力値に対して新しいサンプル関数が描画される。
しかし、そのようなモデルを実装できず、(MCMCを介して)実行された推論の平衡段階において更新されるように、与えられたGPから異なるサンプル関数を描画する平均効果が、異なるGPの集合から異なるサンプル関数を描画する平均効果に等しいことを思い出して、これを置き換える。
カーネルは完全に非パラメトリックであり、入力変数の各次元についてGPの層毎のハイパーパラメータを学習するのに十分である。
私たちはこの新たな学習戦略を実際のデータセットで説明します。
関連論文リスト
- GP+: A Python Library for Kernel-based learning via Gaussian Processes [0.0]
ガウス過程(GP)を通したカーネルベースの学習用オープンソースライブラリGP+を紹介する。
GP+はPyTorch上に構築されており、確率的学習と推論のためのユーザフレンドリでオブジェクト指向のツールを提供する。
論文 参考訳(メタデータ) (2023-12-12T19:39:40Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
GPの非パラメトリックプロセス畳み込み定式化を導入し,機能サンプリング手法を用いて弱点を緩和する。
古典的ディープGPモデルの代替となるこれらの非パラメトリック畳み込みの合成を提案する。
論文 参考訳(メタデータ) (2022-06-17T19:03:04Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
Convergence Guarantees and Empirical Benefits [21.353189917487512]
勾配降下(SGD)とその変種は、機械学習問題のアルゴリズムとして確立されている。
我々は、最小バッチSGDが全ログ類似損失関数の臨界点に収束することを証明して一歩前進する。
我々の理論的な保証は、核関数が指数的あるいは固有デカイを示すことを前提としている。
論文 参考訳(メタデータ) (2021-11-19T22:28:47Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Learning Nonparametric Volterra Kernels with Gaussian Processes [0.0]
本稿では、ガウス過程(GP)を用いて表現されたカーネルを持つボルテラ級数を用いて、非線形作用素の非パラメトリックベイズ学習法を提案する。
NVKMは、演算子への入力関数が観測されず、GP先行を持つとき、単出力と多重出力の両方の回帰のための強力な方法を構成し、非線形および非パラメトリック潜在力モデルと見なすことができる。
論文 参考訳(メタデータ) (2021-06-10T08:21:00Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - Probabilistic Numeric Convolutional Neural Networks [80.42120128330411]
画像や時系列などの連続的な入力信号は、不規則にサンプリングされたり、値が欠けていたりすることは、既存のディープラーニング手法では困難である。
ガウス過程(GP)として特徴を表す確率的畳み込みニューラルネットワークを提案する。
次に、畳み込み層を、このGP上で定義されたPDEの進化として定義し、次いで非線形性とする。
実験では,SuperPixel-MNISTデータセットの先行技術と医療時間2012データセットの競合性能から,提案手法の誤差を3倍に削減できることが示されている。
論文 参考訳(メタデータ) (2020-10-21T10:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。