論文の概要: Leveraging Large Language Models to Build and Execute Computational
Workflows
- arxiv url: http://arxiv.org/abs/2312.07711v1
- Date: Tue, 12 Dec 2023 20:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 17:34:47.041749
- Title: Leveraging Large Language Models to Build and Execute Computational
Workflows
- Title(参考訳): 大規模言語モデルを活用した計算ワークフローの構築と実行
- Authors: Alejandro Duque, Abdullah Syed, Kastan V. Day, Matthew J. Berry,
Daniel S. Katz, Volodymyr V. Kindratenko
- Abstract要約: 本稿では,これらの新たな能力が,複雑な科学的研究を促進するためにどのように活用できるかを考察する。
我々はPhyloflowをOpenAIの関数呼び出しAPIに統合する試みからの最初の成果を提示し、包括的なワークフロー管理システムを開発するための戦略を概説する。
- 参考スコア(独自算出の注目度): 40.572754656757475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of large language models (LLMs) with multi-billion
parameters, coupled with the creation of user-friendly application programming
interfaces (APIs), has paved the way for automatically generating and executing
code in response to straightforward human queries. This paper explores how
these emerging capabilities can be harnessed to facilitate complex scientific
workflows, eliminating the need for traditional coding methods. We present
initial findings from our attempt to integrate Phyloflow with OpenAI's
function-calling API, and outline a strategy for developing a comprehensive
workflow management system based on these concepts.
- Abstract(参考訳): 数十億のパラメータを持つ大規模言語モデル(llms)の最近の開発と、ユーザフレンドリーなアプリケーションプログラミングインターフェース(apis)の作成が相まって、簡単なヒューマンクエリに応答してコードの自動生成と実行ができるようになった。
本稿では、これらの新興能力がどのようにして複雑な科学的なワークフローを容易にし、従来のコーディング方法の必要性をなくすのかを考察する。
我々はPhyloflowをOpenAIの関数呼び出しAPIに統合する試みからの最初の成果を示し、これらの概念に基づいた包括的なワークフロー管理システムを開発するための戦略を概説する。
関連論文リスト
- Semantic API Alignment: Linking High-level User Goals to APIs [6.494714497852088]
既存のライブラリを使った要件エンジニアリングから実装まで,複数のステップにまたがるビジョンを提示する。
このアプローチは、セマンティックAPIアライメント(SEAL)と呼ばれ、ユーザの高レベルな目標と1つ以上のAPIの特定の機能とのギャップを埋めることを目的としています。
論文 参考訳(メタデータ) (2024-05-07T11:54:32Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Are Human Rules Necessary? Generating Reusable APIs with CoT Reasoning and In-Context Learning [14.351476383642016]
そこで我々は,Stack OverflowコードスニペットのAPIzationを自動的に実行する,Code2APIという新しいアプローチを提案する。
Code2APIは、追加のモデルトレーニングや手作業のルールを必要としない。
他の外部ツールに頼ることなく、パーソナルコンピュータに簡単にデプロイできる。
論文 参考訳(メタデータ) (2024-05-06T14:22:17Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
機械学習(ML)ベースのシステムの開発は複雑で、多様なスキルセットを持つ複数の学際的なチームが必要である。
現在のプロセスモデリング言語は、そのようなシステムの開発を説明するには適していない。
ドメイン固有言語を中心に構築されたMLベースのソフトウェア開発プロセスのモデリングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-04-29T09:17:36Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [59.772904419928054]
大規模視覚言語モデル (VLM) はマルチモーダル認識と推論において大きな進歩を遂げた。
本稿では,エージェントの視覚とテキストタスクの目的を正確に解読する新しいVLMであるOctopusを紹介する。
我々の設計では、シミュレーターの日常的な雑用から複雑なビデオゲームの高度なインタラクションまで、エージェントは幅広いタスクを十分に扱えるようにしている。
論文 参考訳(メタデータ) (2023-10-12T17:59:58Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - A Composable Just-In-Time Programming Framework with LLMs and FBP [0.0]
本稿では、フローベースプログラミング(FBP)とLarge Language Models(LLM)を組み合わせてJust-In-Time Programming(JITP)を実現するコンピューティングフレームワークを提案する。
JITPは、プログラミングの専門知識に関わらず、タスクタイムのアルゴリズム的洞察を活用することで、開発と自動化プロセスに積極的に参加することを可能にする。
このフレームワークは、フローベースのプログラム内で動的コード実行を可能にするために、リアルタイムでコードをリクエストし、生成することができる。
論文 参考訳(メタデータ) (2023-07-31T23:51:46Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。