論文の概要: Declarative Integration and Management of Large Language Models through Finite Automata: Application to Automation, Communication, and Ethics
- arxiv url: http://arxiv.org/abs/2409.13693v1
- Date: Mon, 2 Sep 2024 11:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:57:35.275043
- Title: Declarative Integration and Management of Large Language Models through Finite Automata: Application to Automation, Communication, and Ethics
- Title(参考訳): 有限オートマタによる大規模言語モデルの宣言的統合と管理:自動化・コミュニケーション・倫理への応用
- Authors: Thierry Petit, Arnault Pachot, Claire Conan-Vrinat, Alexandre Dubarry,
- Abstract要約: この記事では、設計した革新的なアーキテクチャを紹介します。
最も適切な大言語モデル(LLM)を共有履歴で記述し、最も適切な言語を識別するトリガーを記述します。
特定のタスクのためのLLM。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article introduces an innovative architecture designed to declaratively combine Large Language Models (LLMs) with shared histories, and triggers to identify the most appropriate LLM for a given task. Our approach is general and declarative, relying on the construction of finite automata coupled with an event management system. The developed tool is crafted to facilitate the efficient and complex integration of LLMs with minimal programming effort, especially, but not only, for integrating methods of positive psychology to AI. The flexibility of our technique is demonstrated through applied examples in automation, communication, and ethics.
- Abstract(参考訳): 本稿では,Large Language Models(LLM)を共有履歴と宣言的に組み合わせて設計した革新的なアーキテクチャを紹介する。
我々のアプローチは汎用的で宣言的であり、イベント管理システムと組み合わされた有限オートマトンの構築に依存している。
開発ツールは、プログラミングの最小限の労力、特にポジティブ心理学の手法をAIに統合するために、LLMの効率的で複雑な統合を容易にするために作られた。
この手法の柔軟性は、自動化、コミュニケーション、倫理の応用例を通して実証される。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Control Industrial Automation System with Large Language Models [2.2369578015657954]
本稿では,大規模言語モデルと産業自動化システムを統合するためのフレームワークを提案する。
フレームワークの中核には、産業タスク用に設計されたエージェントシステム、構造化プロンプト方法、イベント駆動情報モデリング機構がある。
コントリビューションには、フォーマルなシステム設計、概念実証実装、タスク固有のデータセットを生成する方法が含まれる。
論文 参考訳(メタデータ) (2024-09-26T16:19:37Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
本稿では,大規模言語モデル(LLM)をプログラミングに統合するための簡易なアプローチを提案する。
提案手法は,従来のプログラミング言語と自然言語を自動的に翻訳するために,既存のプログラムのセマンティック・リッチネスを利用する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - Synergy of Large Language Model and Model Driven Engineering for Automated Development of Centralized Vehicular Systems [2.887732304499794]
モデル駆動工学(MDE)とLarge Language Models(LLM)の相乗効果を利用したツールのプロトタイプを提案する。
CARLAシミュレータを用いて、緊急ブレーキのシナリオにおいて、生成されたコードをシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2024-04-08T13:28:11Z) - Leveraging Large Language Models to Build and Execute Computational
Workflows [40.572754656757475]
本稿では,これらの新たな能力が,複雑な科学的研究を促進するためにどのように活用できるかを考察する。
我々はPhyloflowをOpenAIの関数呼び出しAPIに統合する試みからの最初の成果を提示し、包括的なワークフロー管理システムを開発するための戦略を概説する。
論文 参考訳(メタデータ) (2023-12-12T20:17:13Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
本稿では, LLM, AutoMage, EDAツールがエグゼクタとして機能するEDA用自律エージェントChatEDAを紹介する。
ChatEDAは、タスク分解、スクリプト生成、タスク実行を効果的に管理することで、登録-転送レベル(RTL)からグラフデータシステムバージョンII(GDSII)への設計フローを合理化する。
論文 参考訳(メタデータ) (2023-08-20T08:32:13Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。