論文の概要: MedYOLO: A Medical Image Object Detection Framework
- arxiv url: http://arxiv.org/abs/2312.07729v2
- Date: Fri, 7 Jun 2024 16:53:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 20:36:48.831400
- Title: MedYOLO: A Medical Image Object Detection Framework
- Title(参考訳): MedYOLO: 医用画像オブジェクト検出フレームワーク
- Authors: Joseph Sobek, Jose R. Medina Inojosa, Betsy J. Medina Inojosa, S. M. Rassoulinejad-Mousavi, Gian Marco Conte, Francisco Lopez-Jimenez, Bradley J. Erickson,
- Abstract要約: YOLOモデルのワンショット検出手法を用いた3次元オブジェクト検出フレームワークであるMedYOLOについて報告する。
我々のモデルでは、心臓、肝臓、膵など、現在一般的に使われている中大の構造物で高い性能を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed Tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas even without hyperparameter tuning. However, the models struggle with very small or rarely present structures.
- Abstract(参考訳): 医療画像における臓器、病変、その他の構造の人工知能による同定は、通常、興味のある領域のボクセル正確なセグメンテーションを作成するために設計された畳み込みニューラルネットワーク(CNN)を用いて行われる。
しかし、これらのCNNを訓練するために必要なラベルは、品質を確保するのに時間を要する。
ボクセルレベルの精度を必要としないタスクに対しては、オブジェクト検出モデルはアノテーションの労力を減らすための実行可能な代替手段を提供する。
この潜在的な応用にもかかわらず、3次元医用画像の汎用オブジェクト検出フレームワークには選択肢がほとんどない。
本報告では, YOLO モデルのワンショット検出手法を用いた3次元物体検出フレームワーク MedYOLO について報告する。
BRaTS,LIDC,腹部臓器CT(CT)データセット,心電図同期心電図CTデータセットの4つの異なるデータセットでこのモデルを検証した。
ハイパーパラメータチューニングを必要とせずに, 心臓, 肝臓, 膵などの中・大規模構造で高い性能を得られた。
しかし、モデルは非常に小さな、または稀に現存する構造に苦しむ。
関連論文リスト
- μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X線計算マイクロトモグラフィー(mu-CT)は、医学および生物学的サンプルの内部解剖の高解像度な3D画像を生成する非破壊的手法である。
3D画像から関連情報を抽出するには、興味のある領域のセマンティックセグメンテーションが必要である。
本稿では、畳み込みニューラルネットワーク(CNN)を用いて、Carassius auratusの心臓の完全な形態を自動分割する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-24T15:29:08Z) - From Tissue Plane to Organ World: A Benchmark Dataset for Multimodal Biomedical Image Registration using Deep Co-Attention Networks [17.718448707146017]
組織と臓器の登録は、特定の組織学的セクションがヒトの臓器のごく一部しか取得できないため、追加の課題となる。
私たちは、さまざまな機関からソースを得たATOMベンチマークデータセットを作成し、この課題を機械学習問題に変換することを目的としています。
RegisMCANモデルの性能は,臓器画像から抽出した部分領域が全体の3次元体積内からどこから抽出されたのかを正確に予測する深層学習の可能性を示している。
論文 参考訳(メタデータ) (2024-06-06T14:21:15Z) - Comparative Analysis of Deep Convolutional Neural Networks for Detecting Medical Image Deepfakes [0.0]
本稿では,13種類の最新のDeep Convolutional Neural Network(DCNN)モデルについて総合評価を行った。
ResNet50V2は精度と特異性に優れており、DenseNet169はその正確さ、リコール、F1スコアで区別されている。
また,DenseNetモデルとEfficientNetモデルの両方において,検討対象のDCNN間の遅延空間分離性の評価を行った。
論文 参考訳(メタデータ) (2024-01-08T16:37:22Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
ディープラーニングのような強力な人工知能のツールは、3D画像全体を分割し、すべての内部解剖の正確な測定を生成することができるようになった。
これにより、これまで存在した深刻なボトルネック、すなわち手動セグメンテーションの必要性の克服が可能になる。
これらの測定は不可能であったため、フィールドを非常に小さく限られたサブセットに制限した。
論文 参考訳(メタデータ) (2021-06-01T17:30:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。