Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction
- URL: http://arxiv.org/abs/2312.07945v1
- Date: Wed, 13 Dec 2023 07:44:05 GMT
- Title: Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction
- Authors: Gabriele Formis, Stefano Scanzio, Gianluca Cena, Adriano Valenzano
- Abstract summary: In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
- Score: 2.34863357088666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to predict the behavior of a wireless channel in terms of the
frame delivery ratio is quite valuable, and permits, e.g., to optimize the
operating parameters of a wireless network at runtime, or to proactively react
to the degradation of the channel quality, in order to meet the stringent
requirements about dependability and end-to-end latency that typically
characterize industrial applications.
In this work, prediction models based on the exponential moving average (EMA)
are investigated in depth, which are proven to outperform other simple
statistical methods and whose performance is nearly as good as artificial
neural networks, but with dramatically lower computational requirements.
Regarding the innovation and motivation of this work, a new model that we
called EMA linear combination (ELC), is introduced, explained, and evaluated
experimentally.
Its prediction accuracy, tested on some databases acquired from a real setup
based on Wi-Fi devices, showed that ELC brings tangible improvements over EMA
in any experimental conditions, the only drawback being a slight increase in
computational complexity.
Related papers
- Mixing Neural Networks and Exponential Moving Averages for Predicting Wireless Links Behavior [0.8999666725996974]
We study two neural network models for Wi-Fi link quality prediction in dense indoor environments.
Experimental results show that their accuracy outperforms conventional methods based on exponential moving averages.
This highlights the potential of neural networks for predicting spectrum behavior in challenging operating conditions.
arXiv Detail & Related papers (2024-11-17T22:13:07Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
6th generation (6G) mobile networks bring new challenges in supporting high-mobility communications.
We present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model.
Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS)
arXiv Detail & Related papers (2024-10-28T13:04:23Z) - An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications [5.135587709363216]
This paper introduces the minimum error entropy criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications.
The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization.
arXiv Detail & Related papers (2024-09-25T12:45:47Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
In this article, we analyze the dynamical, computational, and learning properties of adaptive LIF neurons and networks thereof.
We show that the superiority of networks of adaptive LIF neurons extends to the prediction and generation of complex time series.
arXiv Detail & Related papers (2024-08-14T12:49:58Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Learning to Precode for Integrated Sensing and Communications Systems [11.689567114100514]
We present an unsupervised learning neural model to design transmit precoders for ISAC systems.
We show that the proposed method outperforms traditional optimization-based methods in presence of channel estimation errors.
arXiv Detail & Related papers (2023-03-11T11:24:18Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.