An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications
- URL: http://arxiv.org/abs/2410.07208v1
- Date: Wed, 25 Sep 2024 12:45:47 GMT
- Title: An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications
- Authors: Rumeshika Pallewela, Eslam Eldeeb, Hirley Alves,
- Abstract summary: This paper introduces the minimum error entropy criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications.
The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization.
- Score: 5.135587709363216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the minimum error entropy (MEE) criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications. The MEE criterion leverages higher-order statistical properties, offering robustness in noisy scenarios like Rayleigh fading and impulsive interference. In addition, we propose a less computationally complex version of the MEE function to enhance practical usability in wireless communications. The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization. Results indicate that the MEE criterion outperforms conventional loss functions, such as mean squared error (MSE) and mean absolute error (MAE), achieving significant performance improvements in terms of accuracy, over $20 \%$ gain over traditional methods, and convergence speed across various channel conditions. This work establishes MEE as a promising alternative for wireless communication tasks in deep learning models, enabling better resilience and adaptability.
Related papers
- Deep learning approaches to indoor wireless channel estimation for low-power communication [0.0]
This paper presents two Fully Connected Neural Networks (FCNNs)-based Low Power (LP-IoT) channel estimation models, leveraging RSSI for accurate channel estimation in LP-IoT communication.
Our Model A exhibits a remarkable 99.02% reduction in Mean Squared Error (MSE), and Model B demonstrates a notable 90.03% MSE reduction compared to the benchmarks set by current studies.
arXiv Detail & Related papers (2024-05-21T00:36:34Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
arXiv Detail & Related papers (2023-12-13T07:44:05Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Revisiting the Robustness of the Minimum Error Entropy Criterion: A
Transfer Learning Case Study [16.07380451502911]
This paper revisits the robustness of the minimum error entropy criterion to deal with non-Gaussian noises.
We investigate its feasibility and usefulness in real-life transfer learning regression tasks, where distributional shifts are common.
arXiv Detail & Related papers (2023-07-17T15:38:11Z) - Learning to Precode for Integrated Sensing and Communications Systems [11.689567114100514]
We present an unsupervised learning neural model to design transmit precoders for ISAC systems.
We show that the proposed method outperforms traditional optimization-based methods in presence of channel estimation errors.
arXiv Detail & Related papers (2023-03-11T11:24:18Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
We propose the age of semantics (AoS) for measuring semantics freshness of status updates in a cooperative relay communication system.
We derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework.
We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset.
arXiv Detail & Related papers (2022-09-19T11:55:28Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.