論文の概要: 3DReact: Geometric deep learning for chemical reactions
- arxiv url: http://arxiv.org/abs/2312.08307v2
- Date: Fri, 12 Jul 2024 14:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 05:37:10.989348
- Title: 3DReact: Geometric deep learning for chemical reactions
- Title(参考訳): 3DReact: 化学反応のための幾何学的深層学習
- Authors: Puck van Gerwen, Ksenia R. Briling, Charlotte Bunne, Vignesh Ram Somnath, Ruben Laplaza, Andreas Krause, Clemence Corminboeuf,
- Abstract要約: 反応物質と生成物の3次元構造から反応特性を予測する3DReactについて述べる。
反応特性予測の既存のモデルと比較して、3DReactは原子マッピング情報を利用する柔軟なフレームワークを提供する。
異なるデータセット、原子をマッピングするレシエーション、およびジオメトリと外挿タスクの両方にわたって、体系的にうまく機能する。
- 参考スコア(独自算出の注目度): 35.38031930589095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric deep learning models, which incorporate the relevant molecular symmetries within the neural network architecture, have considerably improved the accuracy and data efficiency of predictions of molecular properties. Building on this success, we introduce 3DReact, a geometric deep learning model to predict reaction properties from three-dimensional structures of reactants and products. We demonstrate that the invariant version of the model is sufficient for existing reaction datasets. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets in different atom-mapping regimes. We show that, compared to existing models for reaction property prediction, 3DReact offers a flexible framework that exploits atom-mapping information, if available, as well as geometries of reactants and products (in an invariant or equivariant fashion). Accordingly, it performs systematically well across different datasets, atom-mapping regimes, as well as both interpolation and extrapolation tasks.
- Abstract(参考訳): ニューラルネットワークアーキテクチャに関連する分子対称性を組み込んだ幾何学的ディープラーニングモデルは、分子特性の予測の精度とデータ効率を大幅に改善した。
この成功に基づいて,反応物と生成物の三次元構造から反応特性を予測する幾何学的深層学習モデルである3DReactを導入する。
モデルの不変バージョンが既存の反応データセットに十分であることを示す。
本稿では,GDB7-22-TS,Cyclo-23-TS,Proparg-21-TSの各データセットにおけるアクティベーションバリアの予測における競合性能について述べる。
反応特性予測の既存のモデルと比較して、3DReactは、もし利用可能であれば原子をマッピングする情報を利用する柔軟なフレームワークと、(不変または同変の方法で)反応物質と生成物のジオメトリを提供する。
したがって、異なるデータセット、原子をマッピングするレシエーション、および補間と補間の両方のタスクを体系的にうまく実行する。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
有機反応の機械的理解は、反応の発生、不純物予測、そして原則として反応発見を促進する。
いくつかの機械学習モデルは、反応生成物を予測するタスクに対処しようとしているが、反応機構を予測するための拡張は、対応する力学データセットの欠如によって妨げられている。
実験によって報告された反応物質と生成物の中間体を専門家の反応テンプレートを用いて入力し、その結果の5,184,184個の基本ステップに基づいて機械学習モデルを訓練することにより、そのようなデータセットを構築する。
論文 参考訳(メタデータ) (2024-03-07T15:26:23Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
原子系の計算モデリングの最近の進歩は、これらを3次元ユークリッド空間のノードとして埋め込まれた原子を含む幾何学的グラフとして表現している。
Geometric Graph Neural Networksは、タンパク質構造予測から分子シミュレーション、物質生成まで、幅広い応用を駆動する機械学習アーキテクチャとして好まれている。
本稿では,3次元原子システムのための幾何学的GNNの分野について,包括的で自己完結した概要を述べる。
論文 参考訳(メタデータ) (2023-12-12T18:44:19Z) - On the importance of catalyst-adsorbate 3D interactions for relaxed
energy predictions [98.70797778496366]
吸着剤の相対的な位置を無視しながら,OC20データセットの緩和エネルギーを予測できるかどうかを検討する。
結合サイト情報の削除は,期待通りに精度を低下させるが,修正モデルは極めて良好なMAEで緩和エネルギーを予測することができる。
論文 参考訳(メタデータ) (2023-10-10T14:57:04Z) - Diffusion-based Generative AI for Exploring Transition States from 2D
Molecular Graphs [0.3759936323189417]
本稿では,遷移状態の幾何学的予測のための拡散法,すなわち TSDiff に基づく生成的アプローチを提案する。
TSDiffは、精度と効率の両面で、既存の機械学習モデルよりも3Dジオメトリの方が優れている。
論文 参考訳(メタデータ) (2023-04-20T10:45:57Z) - Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction [9.112532782451233]
本稿では,タンパク質-リガンド相互作用の動的特徴を特徴付けるため,GNNを用いたトランスフォーマーモデルに基づく新しいアプローチを提案する。
我々のメッセージパッシングトランスフォーマーは、物理シミュレーションに基づく分子動力学データに基づいて事前訓練を行い、座標構成を学習し、結合確率と親和性予測を行う。
論文 参考訳(メタデータ) (2022-12-20T04:21:19Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Energy-based View of Retrosynthesis [70.66156081030766]
エネルギーモデルとしてシーケンスおよびグラフベースの手法を統一するフレームワークを提案する。
本稿では,ベイズ前方および後方予測に対して一貫した訓練を行うフレームワーク内での新しい二重変種を提案する。
このモデルは、反応型が不明なテンプレートフリーアプローチに対して、最先端の性能を9.6%向上させる。
論文 参考訳(メタデータ) (2020-07-14T18:51:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。