論文の概要: LD-SDM: Language-Driven Hierarchical Species Distribution Modeling
- arxiv url: http://arxiv.org/abs/2312.08334v2
- Date: Sun, 07 Sep 2025 01:15:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:02.590932
- Title: LD-SDM: Language-Driven Hierarchical Species Distribution Modeling
- Title(参考訳): LD-SDM:言語駆動型階層型種分布モデリング
- Authors: Srikumar Sastry, Xin Xing, Aayush Dhakal, Subash Khanal, Adeel Ahmad, Nathan Jacobs,
- Abstract要約: 本稿では,大規模言語モデルを用いて,テキストのプロンプトから分類学分類の潜在表現を抽出する。
これにより、追加の監督なしに、目に見えない種を含むあらゆる分類学的ランクの範囲をマップできる。
また,種分布モデルの評価に適した近接認識評価指標を提案する。
- 参考スコア(独自算出の注目度): 22.120764293663935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We focus on species distribution modeling using global-scale presence-only data, leveraging geographical and environmental features to map species ranges, as in previous studies. However, we innovate by integrating taxonomic classification into our approach. Specifically, we propose using a large language model to extract a latent representation of the taxonomic classification from a textual prompt. This allows us to map the range of any taxonomic rank, including unseen species, without additional supervision. We also present a new proximity-aware evaluation metric, suitable for evaluating species distribution models, which addresses critical shortcomings of traditional metrics. We evaluated our model for species range prediction, zero-shot prediction, and geo-feature regression and found that it outperforms several state-of-the-art models.
- Abstract(参考訳): 本研究は,地球規模の存在のみのデータを用いた種分布モデリングに焦点をあて,地理的・環境的特徴を利用して種域を地図化することを目的とした。
しかし、分類学的な分類を我々のアプローチに組み込むことで革新する。
具体的には、大規模言語モデルを用いて、テキストプロンプトから分類学分類の潜在表現を抽出する。
これにより、追加の監督なしに、目に見えない種を含むあらゆる分類学的ランクの範囲をマップできる。
また,従来の指標の重大な欠点に対処する種分布モデルの評価に適した,近接認識評価指標を提案する。
我々は,種範囲予測,ゼロショット予測,ジオフューチャー回帰のモデルについて検討し,いくつかの最先端モデルを上回る結果を得た。
関連論文リスト
- Heterogenous graph neural networks for species distribution modeling [6.423278804632857]
グラフニューラルネットワーク(GNN)を用いた新しい存在のみの種分布モデル(SDM)を提案する。
本モデルでは, 種と位置を2つの異なるノード集合として扱い, 学習課題は, 位置と種をつなぐエッジとして検出記録を予測している。
SDMのベンチマークのためのNational Center for Ecological Analysis and Synthesis (NCEAS) によってコンパイルされた6領域データセット上で,本手法の可能性を評価する。
論文 参考訳(メタデータ) (2025-03-14T22:08:30Z) - Few-shot Species Range Estimation [61.60698161072356]
特定の種が地球上でどこで発見できるかを知ることは、生態学の研究と保全に不可欠である。
我々は、限られたデータから種の範囲を正確に推定することの難しさに対処するために、数発の種範囲推定の新しいアプローチを概説する。
推測において,本モデルでは,テキストや画像などの任意のメタデータとともに,空間的位置のセットを入力として取り,フィードフォワード方式で未確認種の範囲を予測できる種を出力する。
論文 参考訳(メタデータ) (2025-02-20T19:13:29Z) - MiTREE: Multi-input Transformer Ecoregion Encoder for Species Distribution Modelling [2.3776390335270694]
我々は、エコリージョンエンコーダを備えたマルチインプット・ビジョン・トランスフォーマー・モデルであるMiTREEを紹介する。
夏期と冬期のサットバードデータセットを用いて,鳥種の出現率を予測することを目的として,本モデルの評価を行った。
論文 参考訳(メタデータ) (2024-12-25T22:20:47Z) - Multi-Scale and Multimodal Species Distribution Modeling [4.022195138381868]
種分布モデル (SDM) は, 発生データと環境変数の分布を予測することを目的としている。
SDMへのディープラーニングの最近の応用は、特に空間データを含む新しい道を可能にしている。
我々はSDMのモジュール構造を開発し、シングルスケールとマルチスケールの両方でスケールの効果をテストする。
GeoLifeCLEF 2023ベンチマークの結果は、マルチモーダルデータとマルチスケール表現の学習を考えると、より正確なモデルが得られることを示している。
論文 参考訳(メタデータ) (2024-11-06T15:57:20Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Generating Binary Species Range Maps [12.342459602972609]
種分散モデル(SDM)や、より最近では、ディープラーニングベースの変種が、潜在的な自動化された代替手段を提供する。
深層学習に基づくSDMは、特定の場所における種の存在を予測した確率を連続的に生成する。
本研究では,プレゼンスのみのデータを用いたレンジマップのバイナライズのための最適しきい値の自動同定手法について検討した。
論文 参考訳(メタデータ) (2024-08-28T17:17:20Z) - Active Learning-Based Species Range Estimation [20.422188189640053]
そこで本研究では,地上観測の限られた数から,種の地理的範囲を効率的に推定するための,新しいアクティブラーニング手法を提案する。
弱教師付きコミュニティで収集された観測データに基づいて訓練されたモデルを用いて,この候補範囲の集合を生成することができることを示す。
提案手法の詳細な評価を行い,1000種に対する専門家由来の範囲を含む評価データセットを用いて,既存のアクティブラーニング手法と比較した。
論文 参考訳(メタデータ) (2023-11-03T17:45:18Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
我々は深層ニューラルネットワークの研究を統一的な枠組みで行った。
私たちのフレームワークは、各モデルの誘導バイアスに関する洞察を提供します。
提案モデルの有効性を,標準画像および音声分類ベンチマークで評価した。
論文 参考訳(メタデータ) (2021-04-16T06:41:20Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。