Deep learning-based estimation of time-dependent parameters in Markov
models with application to nonlinear regression and SDEs
- URL: http://arxiv.org/abs/2312.08493v1
- Date: Wed, 13 Dec 2023 20:13:38 GMT
- Title: Deep learning-based estimation of time-dependent parameters in Markov
models with application to nonlinear regression and SDEs
- Authors: Andrzej Ka{\l}u\.za, Pawe{\l} M. Morkisz, Bart{\l}omiej Mulewicz,
Pawe{\l} Przyby{\l}owicz and Martyna Wi\k{a}cek
- Abstract summary: We present a novel deep learning method for estimating time-dependent parameters in Markov processes through discrete sampling.
Our work contributes to SDE-based model parameter estimation, offering a versatile tool for diverse fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel deep learning method for estimating time-dependent
parameters in Markov processes through discrete sampling. Departing from
conventional machine learning, our approach reframes parameter approximation as
an optimization problem using the maximum likelihood approach. Experimental
validation focuses on parameter estimation in multivariate regression and
stochastic differential equations (SDEs). Theoretical results show that the
real solution is close to SDE with parameters approximated using our neural
network-derived under specific conditions. Our work contributes to SDE-based
model parameter estimation, offering a versatile tool for diverse fields.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Self-supervised Pretraining for Partial Differential Equations [0.0]
We describe a novel approach to building a neural PDE solver leveraging recent advances in transformer based neural network architectures.
Our model can provide solutions for different values of PDE parameters without any need for retraining the network.
arXiv Detail & Related papers (2024-07-03T16:39:32Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Continuous-time stochastic gradient descent for optimizing over the
stationary distribution of stochastic differential equations [7.65995376636176]
We develop a new continuous-time gradient descent method for optimizing over the stationary distribution oficity differential equation (SDE) models.
We rigorously prove convergence of the online forward propagation algorithm for linear SDE models and present its numerical results for nonlinear examples.
arXiv Detail & Related papers (2022-02-14T11:45:22Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Scalable Inference in SDEs by Direct Matching of the
Fokker-Planck-Kolmogorov Equation [14.951655356042949]
Simulation-based techniques such as variants of Runge-Kutta are the de facto approach for inference with differential equations (SDEs) in machine learning.
We show how this workflow is fast, scales to high-dimensional latent spaces, and is applicable to scarce-data applications.
arXiv Detail & Related papers (2021-10-29T12:22:55Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
We present a method for learning latent differential equations (SDEs) from high-dimensional time series data.
The proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach.
We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
arXiv Detail & Related papers (2020-07-12T19:46:31Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.