論文の概要: A Dual Convolutional Neural Network Pipeline for Melanoma Diagnostics
and Prognostics
- arxiv url: http://arxiv.org/abs/2312.08766v1
- Date: Thu, 14 Dec 2023 09:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 23:14:40.797410
- Title: A Dual Convolutional Neural Network Pipeline for Melanoma Diagnostics
and Prognostics
- Title(参考訳): メラノーマ診断と予後診断のための二重畳み込みニューラルネットワークパイプライン
- Authors: Marie B{\o}-Sande, Edvin Benjaminsen, Neel Kanwal, Saul Fuster, Helga
Hardardottir, Ingrid Lundal, Emiel A.M. Janssen, Kjersti Engan
- Abstract要約: メラノーマ(Melanoma)は、皮膚の色素を制御する細胞から発生するがんの一種である。
近年のメラノーマ症例の増加は、より効率的な診断プロセスの必要性が増していることを示している。
本稿では,2つの畳み込みニューラルネットワーク,診断,予後モデルを活用するメラノーマ診断パイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.7498348529748513
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Melanoma is a type of cancer that begins in the cells controlling the pigment
of the skin, and it is often referred to as the most dangerous skin cancer.
Diagnosing melanoma can be time-consuming, and a recent increase in melanoma
incidents indicates a growing demand for a more efficient diagnostic process.
This paper presents a pipeline for melanoma diagnostics, leveraging two
convolutional neural networks, a diagnosis, and a prognosis model. The
diagnostic model is responsible for localizing malignant patches across whole
slide images and delivering a patient-level diagnosis as malignant or benign.
Further, the prognosis model utilizes the diagnostic model's output to provide
a patient-level prognosis as good or bad. The full pipeline has an F1 score of
0.79 when tested on data from the same distribution as it was trained on.
- Abstract(参考訳): メラノーマ(melanoma)は、皮膚の色素を制御している細胞から発生するがんの一種であり、しばしば最も危険な皮膚がんと呼ばれる。
メラノーマの診断は時間がかかり、メラノーマのインシデントの増加は、より効率的な診断プロセスに対する需要の増加を示している。
本稿では, 2つの畳み込みニューラルネットワーク, 診断, 予後モデルを用いて, メラノーマ診断のためのパイプラインを提案する。
診断モデルは、スライド画像全体にわたって悪性パッチをローカライズし、悪性または良性である患者レベルの診断を提供する。
さらに、診断モデルの出力を利用して、患者レベルの予後を良くも悪くも提供する。
フルパイプラインはF1スコアが0.79で、トレーニングされたのと同じ分布のデータでテストされる。
関連論文リスト
- Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
本研究は,メラノーマの深さを測定するために皮膚内視鏡像の解析に焦点をあてる。
顆粒層の上部から腫瘍浸潤の最も深い地点まで測定されたブレスロー深さは、黒色腫のステージングと治療決定の指針となる重要なパラメータである。
ISICやプライベートコレクションを含むさまざまなデータセットが使用され、合計で1162枚の画像が含まれている。
その結果, 従来の手法に比べて, モデルが大幅に改善された。
論文 参考訳(メタデータ) (2024-06-19T11:07:55Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Deep Learning for Predicting Metastasis on Melanoma WSIs [1.4724454726700604]
北ヨーロッパではメラノーマの死亡率が世界第2位である。
悪性黒色腫の予後は、病理医が患者の腫瘍を主観的に分析することに基づいている。
本稿では,VGG16をベースとした畳み込みニューラルネットワーク(CNN)を用いて,転移の有無を5年以内に予測する。
論文 参考訳(メタデータ) (2023-03-10T07:40:09Z) - Detection and Localization of Melanoma Skin Cancer in Histopathological
Whole Slide Images [1.0962389869127878]
皮膚がんの発生が予想される増加と皮膚病理学者の足跡は、計算病理学(CPATH)システムの必要性を強調している。
本論文は,WSI(Whole Slide Images)における悪性黒色腫の検出と正常皮膚と良性悪性黒色腫病変の鑑別のためのDL法を提案する。
本手法は, 病変を高精度に検出し, 病理医の関心領域を特定するためにWSI上に局在する。
論文 参考訳(メタデータ) (2023-02-06T18:54:14Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
メラノーマは最も悪性の皮膚腫瘍であり、通常は正常なモルから発生する。
EffNetとResnetに基づくメラノーマ分類モデルを提案する。
当モデルでは, 同一患者の画像だけでなく, 患者レベルの文脈情報も活用し, がんの予測精度の向上を図る。
論文 参考訳(メタデータ) (2022-04-21T14:46:55Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Early Melanoma Diagnosis with Sequential Dermoscopic Images [10.487636624052564]
悪性黒色腫早期診断のための既存のアルゴリズムは、病変の単一のタイムポイント画像を用いて開発されている。
そこで本研究では,皮膚内視鏡画像を用いた早期メラノーマ診断のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-12T13:05:41Z) - An Attention-based Weakly Supervised framework for Spitzoid Melanocytic
Lesion Diagnosis in WSI [1.0948946179065253]
メラノーマは皮膚がんによる死の大半の原因となる攻撃的な腫瘍である。
診断と予後のための金の基準は、皮膚生検の分析である。
改良型畳み込みニューラルネットワーク(CNN)を用いた誘導伝達学習に基づく,エンドツーエンドの弱い教師付き深層学習モデルを提案する。
本フレームワークは、腫瘍パッチレベルパターンの発見を担当するソースモデルと、生検の特定診断に焦点を当てたターゲットモデルとから構成される。
論文 参考訳(メタデータ) (2021-04-20T10:18:57Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
悪性黒色腫自動診断のための既存の皮膚科医は、病変の単一点像に基づいている。
そこで本研究では,連続した皮膚内視鏡像を用いたメラノーマ診断のための自動フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-19T04:08:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。