論文の概要: Performance evaluation of matrix factorization for fMRI data
- arxiv url: http://arxiv.org/abs/2312.08809v1
- Date: Thu, 14 Dec 2023 10:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 23:00:07.279944
- Title: Performance evaluation of matrix factorization for fMRI data
- Title(参考訳): fmriデータに対するマトリックス因子分解の性能評価
- Authors: Yusuke Endo, Koujin Takeda
- Abstract要約: 脳の研究では、外部刺激の情報表現においてスパース符号化が実現されるという仮説がある。
本研究では, 種々の行列因数分解法を適用し, 人間の脳全体におけるスパース符号化の有効性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the study of the brain, there is a hypothesis that sparse coding is
realized in information representation of external stimuli, which is
experimentally confirmed for visual stimulus recently. However, unlike the
specific functional region in the brain, sparse coding in information
processing in the whole brain has not been clarified sufficiently. In this
study, we investigate the validity of sparse coding in the whole human brain by
applying various matrix factorization methods to functional magnetic resonance
imaging data of neural activities in the whole human brain. The result suggests
sparse coding hypothesis in information representation in the whole human
brain, because extracted features from sparse MF method, SparsePCA or MOD under
high sparsity setting, or approximate sparse MF method, FastICA, can classify
external visual stimuli more accurately than non-sparse MF method or sparse MF
method under low sparsity setting.
- Abstract(参考訳): 脳の研究では、近年視覚刺激に対して実験的に確認されている外部刺激の情報表現においてスパース符号化が実現されるという仮説がある。
しかし、脳内の特定の機能領域とは異なり、脳全体の情報処理におけるスパースコーディングは十分に解明されていない。
本研究では,脳全体の神経活動に関する機能的磁気共鳴画像データに種々のマトリックス因子化法を適用し,ヒト脳全体のスパース符号化の有効性について検討した。
その結果, スパースMF法, SparsePCA法, MOD法から抽出した特徴が, スパース条件下でのスパースMF法, FastICA法から抽出された特徴が, 非スパースMF法やスパースMF法よりも正確に外部視覚刺激を分類できることが示唆された。
関連論文リスト
- Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
本稿では、空間的および時間的解像度ギャップをモダリティに橋渡しするSAMBA(Spatiotemporal Alignment of Multimodal Brain Activity)フレームワークを提案する。
SAMBAは、電気生理学的記録のスペクトルフィルタリングのための新しい注目ベースのウェーブレット分解を導入した。
SAMBAの学習は、翻訳の他に、脳情報処理の豊かな表現も学べることが示されている。
論文 参考訳(メタデータ) (2024-09-27T05:50:29Z) - Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
拡散磁気共鳴イメージング(dMRI)における不完全視野(FOV)は、全脳白質結合の体積および束解析を著しく阻害することができる。
FOVの取得部位における学習拡散特徴を脳解剖学的構造に組み込むことにより, FOVの不完全部分におけるdMRIスキャンを計算するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T18:41:29Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
脳の反応をビデオや静止画像に合わせることで脳の復号化を促進することを提案する。
提案手法はオブジェクト外デコード性能を最大75%向上させる。
また、テスト対象者に対して100分未満のデータが得られる場合、古典的な単一オブジェクトアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T15:55:20Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - BDEC:Brain Deep Embedded Clustering model [10.560936895047321]
ディープラーニングのロバストなデータ適合能力を生かした,BDECと呼ばれる仮定フリーモデルを開発した。
9つの一般的な脳のパーセレーション法と比較することにより,BDECモデルは非常に優れた性能を示す。
これらの結果は,BDECのパーセレーションが脳の機能的特徴を捉え,将来的なボクセル脳ネットワーク解析の可能性を示唆している。
論文 参考訳(メタデータ) (2023-09-12T02:42:11Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。