論文の概要: LLMind: Orchestrating AI and IoT with LLMs for Complex Task Execution
- arxiv url: http://arxiv.org/abs/2312.09007v1
- Date: Thu, 14 Dec 2023 14:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 21:39:30.892121
- Title: LLMind: Orchestrating AI and IoT with LLMs for Complex Task Execution
- Title(参考訳): LLMind: 複雑なタスク実行のためのLLMによるAIとIoTのオーケストレーション
- Authors: Hongwei Cui and Yuyang Du and Qun Yang and Yulin Shao and Soung Chang
Liew
- Abstract要約: 本稿では,大規模言語モデル(LLM)を中央オーケストレータとして利用する,革新的なAIフレームワークを提案する。
このフレームワークはLLMとドメイン固有のAIモジュールを統合し、複雑なタスクの実行においてIoTデバイスが効果的に協力できるようにする。
- 参考スコア(独自算出の注目度): 20.186752447895994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we introduce LLMind, an innovative AI framework that
utilizes large language models (LLMs) as a central orchestrator. The framework
integrates LLMs with domain-specific AI modules, enabling IoT devices to
collaborate effectively in executing complex tasks. The LLM performs planning
and generates control scripts using a reliable and precise language-code
transformation approach based on finite state machines (FSMs). The LLM engages
in natural conversations with users, employing role-playing techniques to
generate contextually appropriate responses. Additionally, users can interact
easily with the AI agent via a user-friendly social media platform. The
framework also incorporates semantic analysis and response optimization
techniques to enhance speed and effectiveness. Ultimately, this framework is
designed not only to innovate IoT device control and enrich user experiences
but also to foster an intelligent and integrated IoT device ecosystem that
evolves and becomes more sophisticated through continuing user and machine
interactions.
- Abstract(参考訳): 本稿では,大規模な言語モデル(LLM)を中央オーケストレータとして利用する,革新的なAIフレームワークであるLLMindを紹介する。
このフレームワークはLLMとドメイン固有のAIモジュールを統合し、複雑なタスクの実行においてIoTデバイスが効果的に協力できるようにする。
LLMは有限状態マシン(FSM)に基づいて、信頼性が高く正確な言語コード変換アプローチを用いて、計画と制御スクリプトを生成する。
llmはユーザとの自然な会話に関わり、ロールプレイング技術を使ってコンテキスト的に適切な応答を生成する。
さらに、ユーザーはユーザーフレンドリーなソーシャルメディアプラットフォームを介してAIエージェントと簡単に対話できる。
フレームワークにはセマンティック分析と応答最適化技術も組み込まれ、スピードと効率性を高めている。
最終的にこのフレームワークは、IoTデバイスコントロールの革新とユーザエクスペリエンスの強化だけでなく、ユーザとマシンのインタラクションの継続を通じて進化し、より高度なものとなる、インテリジェントで統合されたIoTデバイスエコシステムを育むように設計されている。
関連論文リスト
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - Re-Thinking Process Mining in the AI-Based Agents Era [39.58317527488534]
大規模言語モデル(LLM)は強力な対話インタフェースとして登場し、プロセスマイニング(PM)タスクにおけるその応用は有望な結果を示している。
本稿では,LLMにおけるPMの有効性を高めるために,AIベースのエージェント(AgWf)パラダイムを活用することを提案する。
我々はAgWfの様々な実装とAIベースのタスクの種類について検討する。
論文 参考訳(メタデータ) (2024-08-14T10:14:18Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - Meaning-Typed Programming: Language-level Abstractions and Runtime for GenAI Applications [8.308424118055981]
ソフトウェアは、論理コードから、生成的AIとアプリケーション機能に大規模言語モデル(LLM)を活用する神経統合アプリケーションへと、急速に進化している。
本稿では,神経統合型アプリケーションの作成を簡略化する新しい手法として,意味型プログラミング(MTP)を提案する。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
本稿では,ユーザと環境の両方で複数回にまたがる高度なインタラクションを必要とする,対話型Webナビゲーションの新たなタスクを紹介する。
本稿では,メモリ利用と自己回帰技術を用いた自己反射型メモリ拡張計画(Self-MAP)を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:18:12Z) - When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment [100.58938424441027]
モバイル端末とエッジサーバの協調を利用した6GネットワークにおけるAIエージェントの分割学習システムを提案する。
提案システムでは,LLMのための新しいモデルキャッシングアルゴリズムを導入し,コンテキストにおけるモデル利用を改善する。
論文 参考訳(メタデータ) (2024-01-15T15:20:59Z) - LLM-Powered Hierarchical Language Agent for Real-time Human-AI
Coordination [28.22553394518179]
人-AI協調のための階層型言語エージェント(HLA)を提案する。
HLAは、リアルタイム実行を維持しながら、強力な推論能力を提供する。
人間の研究では、HLAは他のベースラインエージェントより優れており、スローミンドのみのエージェントやファストミンドのみのエージェントがある。
論文 参考訳(メタデータ) (2023-12-23T11:09:48Z) - LLM-Based Human-Robot Collaboration Framework for Manipulation Tasks [4.4589894340260585]
本稿では,Large Language Model (LLM) を用いた自律型ロボット操作の論理推論手法を提案する。
提案システムは,LLMとYOLOに基づく環境認識を組み合わせることで,ロボットが自律的に合理的な意思決定を行えるようにする。
論文 参考訳(メタデータ) (2023-08-29T01:54:49Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。