論文の概要: LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution
- arxiv url: http://arxiv.org/abs/2312.09007v3
- Date: Tue, 20 Feb 2024 13:02:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 20:04:09.800792
- Title: LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution
- Title(参考訳): LLMind: 複雑なタスク実行のためのLLMによるAIとIoTのオーケストレーション
- Authors: Hongwei Cui and Yuyang Du and Qun Yang and Yulin Shao and Soung Chang
Liew
- Abstract要約: 複雑なタスクを実行するためのIoTデバイス間で効果的なコラボレーションを可能にするAIエージェントフレームワークであるLLMindを提案する。
脳の機能的特殊化理論に触発されて、我々のフレームワークはLLMをドメイン固有のAIモジュールと統合し、その能力を高める。
- 参考スコア(独自算出の注目度): 20.186752447895994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exploration of large language models (LLMs) for task planning and IoT
automation has recently gained significant attention. However, existing works
suffer from limitations in terms of resource accessibility, complex task
planning, and efficiency. In this paper, we present LLMind, an LLM-based AI
agent framework that enables effective collaboration among IoT devices for
executing complex tasks. Inspired by the functional specialization theory of
the brain, our framework integrates an LLM with domain-specific AI modules,
enhancing its capabilities. Complex tasks, which may involve collaborations of
multiple domain-specific AI modules and IoT devices, are executed through a
control script generated by the LLM using a Language-Code transformation
approach, which first converts language descriptions to an intermediate
finite-state machine (FSM) before final precise transformation to code.
Furthermore, the framework incorporates a novel experience accumulation
mechanism to enhance response speed and effectiveness, allowing the framework
to evolve and become progressively sophisticated through continuing user and
machine interactions.
- Abstract(参考訳): タスク計画とIoT自動化のための大規模言語モデル(LLM)の探索は、最近大きな注目を集めている。
しかし、既存の作業は、リソースアクセシビリティ、複雑なタスク計画、効率性の制限に悩まされている。
本稿では,複雑なタスクを実行するためのiotデバイス間の効果的なコラボレーションを実現する,llmベースのaiエージェントフレームワークであるllmindを提案する。
脳の機能的特殊化理論に触発されて、我々のフレームワークはLLMをドメイン固有のAIモジュールと統合し、その能力を高める。
複数のドメイン固有のAIモジュールとIoTデバイスのコラボレーションを含む複雑なタスクは、LLMが生成するコントロールスクリプトを通じて実行される。Language-Code変換アプローチは、言語記述をコードへの最終的な正確な変換の前に、まず中間有限状態マシン(FSM)に変換する。
さらに、このフレームワークには、応答速度と有効性を向上する新たなエクスペリエンス蓄積機構が組み込まれており、継続的なユーザとマシンのインタラクションを通じてフレームワークが進化し、徐々に洗練される。
関連論文リスト
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - Re-Thinking Process Mining in the AI-Based Agents Era [39.58317527488534]
大規模言語モデル(LLM)は強力な対話インタフェースとして登場し、プロセスマイニング(PM)タスクにおけるその応用は有望な結果を示している。
本稿では,LLMにおけるPMの有効性を高めるために,AIベースのエージェント(AgWf)パラダイムを活用することを提案する。
我々はAgWfの様々な実装とAIベースのタスクの種類について検討する。
論文 参考訳(メタデータ) (2024-08-14T10:14:18Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
物理層をインテリジェントに制御し,アプリケーション層との相互作用を効果的に行うことを目的として,LLMを利用した光ネットワークのフレームワークを提案する。
提案手法は,ネットワークアラーム解析とネットワーク性能最適化の2つの典型的なタスクで検証される。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-14T10:46:33Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
本稿では,ユーザと環境の両方で複数回にまたがる高度なインタラクションを必要とする,対話型Webナビゲーションの新たなタスクを紹介する。
本稿では,メモリ利用と自己回帰技術を用いた自己反射型メモリ拡張計画(Self-MAP)を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:18:12Z) - When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment [100.58938424441027]
モバイル端末とエッジサーバの協調を利用した6GネットワークにおけるAIエージェントの分割学習システムを提案する。
提案システムでは,LLMのための新しいモデルキャッシングアルゴリズムを導入し,コンテキストにおけるモデル利用を改善する。
論文 参考訳(メタデータ) (2024-01-15T15:20:59Z) - LLM-Powered Hierarchical Language Agent for Real-time Human-AI
Coordination [28.22553394518179]
人-AI協調のための階層型言語エージェント(HLA)を提案する。
HLAは、リアルタイム実行を維持しながら、強力な推論能力を提供する。
人間の研究では、HLAは他のベースラインエージェントより優れており、スローミンドのみのエージェントやファストミンドのみのエージェントがある。
論文 参考訳(メタデータ) (2023-12-23T11:09:48Z) - LLM-Based Human-Robot Collaboration Framework for Manipulation Tasks [4.4589894340260585]
本稿では,Large Language Model (LLM) を用いた自律型ロボット操作の論理推論手法を提案する。
提案システムは,LLMとYOLOに基づく環境認識を組み合わせることで,ロボットが自律的に合理的な意思決定を行えるようにする。
論文 参考訳(メタデータ) (2023-08-29T01:54:49Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。