Theoretical consideration of a twisted atom
- URL: http://arxiv.org/abs/2312.09182v2
- Date: Thu, 28 Mar 2024 07:35:55 GMT
- Title: Theoretical consideration of a twisted atom
- Authors: P. K. Maslennikov, A. V. Volotka, S. S. Baturin,
- Abstract summary: We propose a framework for describing the twisted atomic state, and then explore possible differences in the nuclear recoil effects in the twisted atom.
We conclude that if the initial atomic state is twisted, then the photon distribution is altered.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the twisted state of an atom and the possible effect of such a state on the properties of the photons emitted as a result of an electron transition in that atom. We first propose a framework for describing the twisted atomic state, and then explore possible differences in the nuclear recoil effects in the twisted atom compared to those in the plane-wave atom. We conclude that if the initial atomic state is twisted, then the photon distribution is altered. We point out that in a certain observation scheme, one can detect a feature of this twist in the distribution of the emitted photons, even in zero order in $m/M$.
Related papers
- Generation of vortex electrons by atomic photoionization [0.0]
We explore the process of orbital angular momentum transfer from a twisted light beam to an electron in atomic ionization within the first Born approximation.
We find that the outgoing electron possesses a definite projection of OAM when a single atom is located on the propagation axis of the photon.
Shifting the position of the atom yields a finite dispersion of the electron OAM.
arXiv Detail & Related papers (2024-05-23T20:06:47Z) - Conversion of twistedness from light to atoms [0.0]
We show that in the inelastic collision of a photon and an atom, the twisted state of the photon is transferred to the center-of-mass state.
We also show that, depending on the experimental conditions, the twistedness of the photon is either transferred to the atomic center-of-mass quantum state or modifies the selection rule for the bound electron transition.
arXiv Detail & Related papers (2024-04-17T17:00:47Z) - Examples of Atoms Absorbing Photon via Schrödinger Equation and Vacuum Fluctuations [3.313485776871956]
We show that vacuum fluctuations can be the origin of randomness in absorption outcomes.
In the absence of a mechanism to introduce randomness, the Schr"odinger equation alone governs the time evolution of the process.
The Casimir effect, which is closely tied to vacuum fluctuations, presents a promising experimental avenue for validating this mechanism.
arXiv Detail & Related papers (2024-04-08T14:59:55Z) - Vavilov-Cherenkov emission with a twist: a study of the final entangled
state [0.0]
We present a theoretical investigation of the Vavilov-Cherenkov (VC) radiation by a plane-wave or twisted electron.
Special emphasis is put on the question whether and at what conditions the emitted VC photons can be twisted.
arXiv Detail & Related papers (2023-10-15T15:42:35Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Quantum theory of statistical radiation pressure in free space [0.0]
Light is known to exert radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface.
We show that the interaction of an atom with light can lead to both repulsive and attractive forces due to the absorption and emission of photons.
arXiv Detail & Related papers (2021-04-28T12:23:31Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.