Examples of Atoms Absorbing Photon via Schrödinger Equation and Vacuum Fluctuations
- URL: http://arxiv.org/abs/2404.05585v1
- Date: Mon, 8 Apr 2024 14:59:55 GMT
- Title: Examples of Atoms Absorbing Photon via Schrödinger Equation and Vacuum Fluctuations
- Authors: Yongjun Zhang,
- Abstract summary: We show that vacuum fluctuations can be the origin of randomness in absorption outcomes.
In the absence of a mechanism to introduce randomness, the Schr"odinger equation alone governs the time evolution of the process.
The Casimir effect, which is closely tied to vacuum fluctuations, presents a promising experimental avenue for validating this mechanism.
- Score: 3.313485776871956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The absorption of photons by atoms encompasses fundamental quantum mechanical aspects, particularly the emergence of randomness to account for the inherent unpredictability in absorption outcomes. We demonstrate that vacuum fluctuations can be the origin of this randomness. An illustrative example of this is the absorption of a single photon by two symmetrically arranged atoms. In the absence of a mechanism to introduce randomness, the Schr\"odinger equation alone governs the time evolution of the process until an entangled state of the two atoms emerges. This entangled state consists of two components: one in which the first atom is excited by the photon while the second remains in the ground state, and another in which the first atom remains in the ground state while the second is excited by the photon. These components form a superposition state characterized by an unbreakable symmetry in the absence of external influences. Consequently, the absorption process remains incomplete. When vacuum fluctuations come into play, they can induce fluctuations in the weights of these components, akin to Brownian motion. Over time, one component diminishes, thereby breaking the entanglement between the two atoms and allowing the photon absorption process to conclude. The remaining component ultimately determines which atom completes the photon absorption. Similar studies involving different numbers of atoms can be conducted. Vacuum fluctuations not only introduce randomness but also have the potential to give rise to the Born rule in this context. Furthermore, the Casimir effect, which is closely tied to vacuum fluctuations, presents a promising experimental avenue for validating this mechanism.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Flying atom back-reaction and mechanically generated photons from vacuum [0.0]
We investigate the dynamics of a two-level atom flying through a photonic cavity when the light-matter interaction is in the ultrastrong coupling regime.
We adopt a closed full quantum description that takes into account the quantization of the atom center-of-mass motion.
In the first case, the atom experiences a emphquantum regenerative braking mechanism, based on temporary storage of energy into virtual excitations.
arXiv Detail & Related papers (2022-09-21T15:08:09Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum theory of statistical radiation pressure in free space [0.0]
Light is known to exert radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface.
We show that the interaction of an atom with light can lead to both repulsive and attractive forces due to the absorption and emission of photons.
arXiv Detail & Related papers (2021-04-28T12:23:31Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Two sites coherence and visibility [0.0]
Wave-particle duality and the superposition of quantum mechanical states furnish quantum mechanics with unique features.
The two principles are responsible for the observation of the interference effects of quantum particles such as electrons, atoms and molecules.
arXiv Detail & Related papers (2020-06-12T05:06:37Z) - Entanglement sudden birth and sudden death in a system of two distant
atoms coupled via an optical element [1.8275108630751844]
Investigation is reported of the collective effects and the dynamics of atom entanglement in a system of two distant two level atoms.
We show that the evolution of the entanglement is sensitive not only to the interatomic distance but also to the initial state of the system.
arXiv Detail & Related papers (2020-03-07T19:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.