論文の概要: IncepSE: Leveraging InceptionTime's performance with Squeeze and
Excitation mechanism in ECG analysis
- arxiv url: http://arxiv.org/abs/2312.09445v1
- Date: Thu, 16 Nov 2023 11:43:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 14:26:39.677429
- Title: IncepSE: Leveraging InceptionTime's performance with Squeeze and
Excitation mechanism in ECG analysis
- Title(参考訳): IncepSE:ECG分析におけるSqueezeとExcitationメカニズムによるInceptionTimeのパフォーマンス向上
- Authors: Tue Minh Cao, Nhat Hong Tran, Le Phi Nguyen, Hieu Huy Pham, Hung Thanh
Nguyen
- Abstract要約: 本稿では,戦略的アーキテクチャを特徴とする新しいネットワークであるIncepSEを紹介する。
重度不均衡データセット PTB-XL の課題に対処するために,安定化技術を用いたトレーニングセットアップを提案する。
私たちのモデルは、このドメインの他の最先端技術と比較して、インセプションタイムをかなり上回ります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Our study focuses on the potential for modifications of Inception-like
architecture within the electrocardiogram (ECG) domain. To this end, we
introduce IncepSE, a novel network characterized by strategic architectural
incorporation that leverages the strengths of both InceptionTime and channel
attention mechanisms. Furthermore, we propose a training setup that employs
stabilization techniques that are aimed at tackling the formidable challenges
of severe imbalance dataset PTB-XL and gradient corruption. By this means, we
manage to set a new height for deep learning model in a supervised learning
manner across the majority of tasks. Our model consistently surpasses
InceptionTime by substantial margins compared to other state-of-the-arts in
this domain, noticeably 0.013 AUROC score improvement in the "all" task, while
also mitigating the inherent dataset fluctuations during training.
- Abstract(参考訳): 本研究は心電図(ECG)領域におけるインセプション様アーキテクチャの変更の可能性に焦点を当てた。
この目的のために,InceptionTimeとチャネルアテンション機構の双方の長所を生かした戦略的アーキテクチャを特徴とする新しいネットワークIncepSEを紹介する。
さらに, 重度不均衡データセット PTB-XL と勾配汚損の深刻な問題に対処するために, 安定化技術を用いたトレーニング手法を提案する。
これにより、タスクの大部分にわたって教師付き学習方法で、ディープラーニングモデルの新たな高さを設定することができる。
我々のモデルは、この領域の他の最先端技術と比較して、インセプションタイムをはるかに上回り、"オール"タスクにおける0.013のAUROCスコアの改善と、トレーニング中に固有のデータセットの変動を緩和します。
関連論文リスト
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
本稿では,DARTSのアーキテクチャパラメータに適した適応学習率スケジューリング手法を提案する。
提案手法は,学習エポックに基づくアーキテクチャパラメータの学習率を動的に調整し,よく訓練された表現の破壊を防止する。
論文 参考訳(メタデータ) (2024-06-11T07:32:25Z) - LaTiM: Longitudinal representation learning in continuous-time models to predict disease progression [2.663690023739801]
本研究では、時間認識型ニューラル常微分方程式(NODE)を用いた疾患進行解析のための新しい枠組みを提案する。
自己教師付き学習(SSL)によって訓練されたフレームワークに"タイムアウェアヘッド"を導入し、データ拡張のために潜時空間における時間情報を活用する。
OPHDIATデータベースを用いた糖尿病網膜症進行予測法の有効性を示す。
論文 参考訳(メタデータ) (2024-04-10T15:29:29Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
本研究は,Centroid Kinematics (DUCK) による遠隔学習(Distance-based Unlearning)と呼ばれる新しいアンラーニングアルゴリズムを導入する。
アルゴリズムの性能評価は、様々なベンチマークデータセットにまたがって行われる。
また,適応学習スコア (Adaptive Unlearning Score, AUS) と呼ばれる新しい指標を導入し, 対象データに対する未学習プロセスの有効性だけでなく, 元のモデルに対する性能損失の定量化も行った。
論文 参考訳(メタデータ) (2023-12-04T17:10:25Z) - GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks [24.323017830938394]
この作業は、ベースラインとシームレスに統合し、パフォーマンスを向上する事前トレーニングフレームワークを導入することで、課題に対処することを目的としている。
フレームワークは2つの重要な設計に基づいて構築されている。
Apple-to-appleマスクオートエンコーダは、学習時間依存のための事前トレーニングモデルである。
これらのモジュールは、時間内カスタマイズされた表現とセマンティック・クラスタ間関係を捉えるように設計されている。
論文 参考訳(メタデータ) (2023-11-07T02:36:24Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
ニューラルネットワークが様々な情報源からの情報を統合する能力は、トレーニングの初期段階において、適切な相関した信号に晒されることに批判的になることを示す。
臨界周期は、訓練されたシステムとその学習された表現の最終性能を決定づける、複雑で不安定な初期過渡的ダイナミクスから生じることを示す。
論文 参考訳(メタデータ) (2022-10-06T23:50:38Z) - Building Robust Ensembles via Margin Boosting [98.56381714748096]
敵のロバスト性においては、単一のモデルは通常、全ての敵の攻撃に対して十分な力を持っていない。
我々は最大利得のアンサンブルを学習するアルゴリズムを開発した。
提案アルゴリズムは,既存のアンサンブル技術に勝るだけでなく,エンド・ツー・エンドで訓練された大規模モデルにも勝ることを示す。
論文 参考訳(メタデータ) (2022-06-07T14:55:58Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。