論文の概要: Integrating AI and Learning Analytics for Data-Driven Pedagogical
Decisions and Personalized Interventions in Education
- arxiv url: http://arxiv.org/abs/2312.09548v1
- Date: Fri, 15 Dec 2023 06:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 17:02:32.651250
- Title: Integrating AI and Learning Analytics for Data-Driven Pedagogical
Decisions and Personalized Interventions in Education
- Title(参考訳): データ駆動型教育決定のためのAIと学習分析の統合と教育におけるパーソナライズされた介入
- Authors: Ramteja Sajja, Yusuf Sermet, David Cwiertny, Ibrahim Demir
- Abstract要約: 本研究は,革新的な学習分析ツールの概念化,開発,展開について考察する。
本ツールは,学生のエンゲージメントの定量化,学習進行のマップ化,および多様な指導戦略の有効性の評価を目的としている。
- 参考スコア(独自算出の注目度): 0.30723404270319693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research study delves into the conceptualization, development, and
deployment of an innovative learning analytics tool, leveraging the
capabilities of OpenAI's GPT-4 model. This tool is designed to quantify student
engagement, map learning progression, and evaluate the efficacy of diverse
instructional strategies within an educational context. Through the analysis of
various critical data points such as students' stress levels, curiosity,
confusion, agitation, topic preferences, and study methods, the tool offers a
rich, multi-dimensional view of the learning environment. Furthermore, it
employs Bloom's taxonomy as a framework to gauge the cognitive levels addressed
by students' questions, thereby elucidating their learning progression. The
information gathered from these measurements can empower educators by providing
valuable insights to enhance teaching methodologies, pinpoint potential areas
for improvement, and craft personalized interventions for individual students.
The study articulates the design intricacies, implementation strategy, and
thorough evaluation of the learning analytics tool, underscoring its
prospective contributions to enhancing educational outcomes and bolstering
student success. Moreover, the practicalities of integrating the tool within
existing educational platforms and the requisite robust, secure, and scalable
technical infrastructure are addressed. This research opens avenues for
harnessing AI's potential in shaping the future of education, facilitating
data-driven pedagogical decisions, and ultimately fostering a more conducive,
personalized learning environment.
- Abstract(参考訳): 本研究は,OpenAIのGPT-4モデルの能力を活用して,革新的な学習分析ツールの概念化,開発,展開について考察する。
このツールは、学生のエンゲージメントの定量化、学習の進展のマップ化、および教育文脈における多様な教育戦略の有効性の評価を目的としている。
学生のストレスレベル、好奇心、混乱、扇動、トピックの嗜好、学習方法など、さまざまな重要なデータポイントの分析を通じて、学習環境のリッチで多次元的なビューを提供する。
さらに、ブルームの分類法を、学生の質問に対する認知レベルを測定する枠組みとして採用し、学習の進行を解明する。
これらの測定から得られた情報は、教育方法論を強化するための貴重な洞察を提供し、改善のための潜在的な領域を特定し、個々の学生にパーソナライズされた介入を行うことによって、教育者に与えることができる。
この研究は、学習分析ツールの設計の複雑さ、実装戦略、徹底的な評価を特徴付け、教育成果の向上と学生の成功の促進にその将来的な貢献を強調するものである。
さらに、既存の教育プラットフォームにツールを統合する実用性や、堅牢でセキュアでスケーラブルな技術基盤にも対処している。
この研究は、AIが教育の未来を形作る可能性を生かし、データ駆動型教育的意思決定を促進し、最終的にはより円滑でパーソナライズされた学習環境を育むための道を開く。
関連論文リスト
- Revolutionising Role-Playing Games with ChatGPT [0.0]
本研究の目的は,AIによるシミュレーションが学生の学習経験に与える影響を分析することである。
ヴィゴツキーの社会文化的理論に基づいて、ChatGPTは学生に戦略的意思決定プロセスのより深い理解を与えるために用いられた。
論文 参考訳(メタデータ) (2024-07-02T08:21:40Z) - The Perceived Learning Behaviors and Assessment Techniques of First-Year Students in Computer Science: An Empirical Study [0.0]
学生は、直接指導が学習する最も効果的な方法であると信じている。
評価方法としては、実践的・書面的な試験が好まれる。
論文 参考訳(メタデータ) (2024-05-10T08:45:32Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects [30.033926908231297]
本稿では,教育推薦,認知診断,知識追跡,学習分析の4つのシナリオに焦点をあてる。
教育プラットフォームにおけるAIの統合は、学術的パフォーマンス、学習の好み、行動に関する洞察を提供し、個人の学習プロセスを最適化する。
論文 参考訳(メタデータ) (2024-02-27T06:09:48Z) - A Comprehensive Exploration of Personalized Learning in Smart Education:
From Student Modeling to Personalized Recommendations [19.064610936977402]
中国、米国、欧州連合等はパーソナライズされた学習の重要性を推し進めてきた。
このレビューは、パーソナライズされた学習の現在の状況とその教育における重要な役割を包括的に分析する。
論文 参考訳(メタデータ) (2024-01-15T08:49:25Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Tool Learning with Foundation Models [114.2581831746077]
基礎モデルの出現により、AIシステムは、人間としてのツールの使用に等しく適応できる可能性がある。
その大きな可能性にもかかわらず、この分野における重要な課題、機会、そして将来の取り組みに関する包括的な理解はいまだに欠けている。
論文 参考訳(メタデータ) (2023-04-17T15:16:10Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - Desperately seeking the impact of learning analytics in education at
scale: Marrying data analysis with teaching and learning [0.0]
学習分析(LA)は、学習成果、学習者支援、教育を改善することができると主張されている。
教育環境におけるLAの有効性を示す実践への影響の実証的な証拠はいまだ少ない。
学生の大規模学習改善を目的としたデータ駆動意思決定の効果を高めるためには,教育者のニーズをよりよく理解する必要がある。
論文 参考訳(メタデータ) (2021-05-14T07:33:17Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。