論文の概要: A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects
- arxiv url: http://arxiv.org/abs/2402.17236v1
- Date: Tue, 27 Feb 2024 06:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 17:32:07.122856
- Title: A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects
- Title(参考訳): 個人化教育におけるデータマイニングの現状と将来展望
- Authors: Zhang Xiong, Haoxuan Li, Zhuang Liu, Zhuofan Chen, Hao Zhou, Wenge
Rong, Yuanxin Ouyang
- Abstract要約: 本稿では,教育推薦,認知診断,知識追跡,学習分析の4つのシナリオに焦点をあてる。
教育プラットフォームにおけるAIの統合は、学術的パフォーマンス、学習の好み、行動に関する洞察を提供し、個人の学習プロセスを最適化する。
- 参考スコア(独自算出の注目度): 30.033926908231297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized education, tailored to individual student needs, leverages
educational technology and artificial intelligence (AI) in the digital age to
enhance learning effectiveness. The integration of AI in educational platforms
provides insights into academic performance, learning preferences, and
behaviors, optimizing the personal learning process. Driven by data mining
techniques, it not only benefits students but also provides educators and
institutions with tools to craft customized learning experiences. To offer a
comprehensive review of recent advancements in personalized educational data
mining, this paper focuses on four primary scenarios: educational
recommendation, cognitive diagnosis, knowledge tracing, and learning analysis.
This paper presents a structured taxonomy for each area, compiles commonly used
datasets, and identifies future research directions, emphasizing the role of
data mining in enhancing personalized education and paving the way for future
exploration and innovation.
- Abstract(参考訳): 個別の学生のニーズに合わせたパーソナライズド教育は、デジタル時代の教育技術と人工知能(AI)を活用して学習効率を向上させる。
教育プラットフォームにおけるAIの統合は、学術的パフォーマンス、学習の好み、行動に関する洞察を提供し、個人の学習プロセスを最適化する。
データマイニング技術によって、それは学生に利益をもたらすだけでなく、教育者や機関にカスタマイズされた学習体験を作るツールを提供する。
個人化された教育データマイニングの最近の進歩を包括的にレビューするために,本研究では,教育推薦,認知診断,知識追跡,学習分析の4つのシナリオに焦点を当てる。
本稿では,各分野の分類体系を整理し,一般的なデータセットをコンパイルし,今後の研究方向を特定し,パーソナライズ教育におけるデータマイニングの役割を強調し,今後の探索とイノベーションへの道を開く。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - A Comprehensive Exploration of Personalized Learning in Smart Education:
From Student Modeling to Personalized Recommendations [19.064610936977402]
中国、米国、欧州連合等はパーソナライズされた学習の重要性を推し進めてきた。
このレビューは、パーソナライズされた学習の現在の状況とその教育における重要な役割を包括的に分析する。
論文 参考訳(メタデータ) (2024-01-15T08:49:25Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
本研究では,革新的な学習分析ツールの概念化,開発,展開について検討する。
学生のストレスレベル、好奇心、混乱、扇動、トピックの嗜好、学習方法などの重要なデータポイントを分析し、学習環境の総合的なビューを提供する。
この研究は、パーソナライズされたデータ駆動型教育を形成する上で、AIが果たす役割を浮き彫りにする。
論文 参考訳(メタデータ) (2023-12-15T06:00:26Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Ethical behavior in humans and machines -- Evaluating training data
quality for beneficial machine learning [0.0]
本研究では、教師付き機械学習アプリケーションのためのデータ品質の新しい次元について述べる。
本研究の目的は、その行動の倫理的評価に基づいて、トレーニングデータをどのように選択できるかを説明することである。
論文 参考訳(メタデータ) (2020-08-26T09:48:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。