Collaborating Foundation Models for Domain Generalized Semantic Segmentation
- URL: http://arxiv.org/abs/2312.09788v2
- Date: Sat, 30 Mar 2024 01:21:42 GMT
- Title: Collaborating Foundation Models for Domain Generalized Semantic Segmentation
- Authors: Yasser Benigmim, Subhankar Roy, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière,
- Abstract summary: Domain Generalized Semantic (DGSS) deals with training a model on a labeled source domain.
We take an approach to DGSS and propose to use an assembly of CoLlaborative FOUndation models for Domain Generalized Semantic (CLOUDS)
- Score: 23.359941294938142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Generalized Semantic Segmentation (DGSS) deals with training a model on a labeled source domain with the aim of generalizing to unseen domains during inference. Existing DGSS methods typically effectuate robust features by means of Domain Randomization (DR). Such an approach is often limited as it can only account for style diversification and not content. In this work, we take an orthogonal approach to DGSS and propose to use an assembly of CoLlaborative FOUndation models for Domain Generalized Semantic Segmentation (CLOUDS). In detail, CLOUDS is a framework that integrates FMs of various kinds: (i) CLIP backbone for its robust feature representation, (ii) generative models to diversify the content, thereby covering various modes of the possible target distribution, and (iii) Segment Anything Model (SAM) for iteratively refining the predictions of the segmentation model. Extensive experiments show that our CLOUDS excels in adapting from synthetic to real DGSS benchmarks and under varying weather conditions, notably outperforming prior methods by 5.6% and 6.7% on averaged miou, respectively. The code is available at : https://github.com/yasserben/CLOUDS
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization [19.0284321951354]
Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training.
We propose FDS, Feedback-guided Domain Synthesis, a novel strategy that employs diffusion models to synthesize novel, pseudo-domains.
Our evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets.
arXiv Detail & Related papers (2024-07-04T02:45:29Z) - AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction [4.299153274884263]
We propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM)
Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.
arXiv Detail & Related papers (2022-11-22T09:10:37Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Meta-Learned Feature Critics for Domain Generalized Semantic
Segmentation [38.81908956978064]
We propose a novel meta-learning scheme with feature disentanglement ability, which derives domain-invariant features for semantic segmentation with domain generalization guarantees.
Our results on benchmark datasets confirm the effectiveness and robustness of our proposed model.
arXiv Detail & Related papers (2021-12-27T06:43:39Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Feature Transformation Ensemble Model with Batch Spectral Regularization
for Cross-Domain Few-Shot Classification [66.91839845347604]
We propose an ensemble prediction model by performing diverse feature transformations after a feature extraction network.
We use a batch spectral regularization term to suppress the singular values of the feature matrix during pre-training to improve the generalization ability of the model.
The proposed model can then be fine tuned in the target domain to address few-shot classification.
arXiv Detail & Related papers (2020-05-18T05:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.