論文の概要: Reliable Probabilistic Classification with Neural Networks
- arxiv url: http://arxiv.org/abs/2312.09912v1
- Date: Fri, 15 Dec 2023 16:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 15:07:23.132873
- Title: Reliable Probabilistic Classification with Neural Networks
- Title(参考訳): ニューラルネットワークを用いた信頼性確率的分類
- Authors: Harris Papadopoulos
- Abstract要約: Venn Prediction(VP)は、よく校正された確率予測を生成するための、新しい機械学習フレームワークである。
本稿では,ニューラルネットワーク(NN)に基づく5つのVP手法を提案する。
- 参考スコア(独自算出の注目度): 0.6993026261767287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Venn Prediction (VP) is a new machine learning framework for producing
well-calibrated probabilistic predictions. In particular it provides
well-calibrated lower and upper bounds for the conditional probability of an
example belonging to each possible class of the problem at hand. This paper
proposes five VP methods based on Neural Networks (NNs), which is one of the
most widely used machine learning techniques. The proposed methods are
evaluated experimentally on four benchmark datasets and the obtained results
demonstrate the empirical well-calibratedness of their outputs and their
superiority over the outputs of the traditional NN classifier.
- Abstract(参考訳): Venn Prediction (VP)は、よく校正された確率予測を生成するための新しい機械学習フレームワークである。
特に、手元にある問題の各可能なクラスに属する例の条件付き確率に対して、適切に調整された下限と上限を提供する。
本稿では,ニューラルネットワーク(NN)に基づく5つのVP手法を提案する。
提案手法は,4つのベンチマークデータセットを用いて実験的に評価し,得られた結果から,従来のnn分類器の出力に対する経験的適合性および優越性を示す。
関連論文リスト
- An Interpretable Alternative to Neural Representation Learning for Rating Prediction -- Transparent Latent Class Modeling of User Reviews [8.392465185798713]
本稿では,レビュー情報に基づいてユーザおよび製品潜伏クラスを編成する透過確率モデルを提案する。
本研究は,テキストベースニューラルネットワークと比較して,解釈可能性と予測性能の両面から評価する。
論文 参考訳(メタデータ) (2024-06-17T07:07:42Z) - Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
ニューラルネットワークベースのアクティブラーニング(NAL)は、ニューラルネットワークを使用してサンプルの小さなサブセットを選択してトレーニングする、費用対効果の高いデータ選択技術である。
我々は、機能学習の観点から、両方のクエリ基準ベースのNALの成功について、統一的な説明を提供することにより、一歩前進させようとする。
論文 参考訳(メタデータ) (2024-06-06T10:38:01Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Amortised Inference in Bayesian Neural Networks [0.0]
Amortized Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN)を紹介する。
補正された推論は、従来の変分推論によって得られたものと類似または良好な品質であることが示される。
次に、APOVI-BNNをニューラルプロセスファミリーの新たなメンバーと見なす方法について論じる。
論文 参考訳(メタデータ) (2023-09-06T14:02:33Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Towards Robust Neural Retrieval Models with Synthetic Pre-Training [28.547347789198096]
本研究では,シーケンシャル・トゥ・シークエンス生成器を用いて生成した合成トレーニング例について述べる。
本実験では,5つのテストセットにおけるドメイン内およびドメイン外両方の検索性能を,合成例による事前学習により改善する。
論文 参考訳(メタデータ) (2021-04-15T22:12:01Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z) - Sampling Prediction-Matching Examples in Neural Networks: A
Probabilistic Programming Approach [9.978961706999833]
本稿では,確率的プログラミングを用いた分類器の予測レベルセットの探索について考察する。
我々は,予測器が同一の特定の予測信頼度を持つ例のセットとして,予測レベルを定義した。
合成データセットとMNISTを用いた実験により,本手法を実証する。
論文 参考訳(メタデータ) (2020-01-09T15:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。