Deep Reinforcement Learning for Joint Cruise Control and Intelligent
Data Acquisition in UAVs-Assisted Sensor Networks
- URL: http://arxiv.org/abs/2312.09953v1
- Date: Fri, 15 Dec 2023 17:04:03 GMT
- Title: Deep Reinforcement Learning for Joint Cruise Control and Intelligent
Data Acquisition in UAVs-Assisted Sensor Networks
- Authors: Yousef Emami
- Abstract summary: Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets) are experiencing significant growth in civil applications worldwide.
One major challenge in these scenarios is that the movements of UAVs affect channel conditions and result in packet loss.
Our proposal is to minimize packet loss by jointly optimizing the velocity controls and data collection schedules of multiple UAVs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play
a crucial role in creating new opportunities, are experiencing significant
growth in civil applications worldwide. UASNets improve disaster management
through timely surveillance and advance precision agriculture with detailed
crop monitoring, thereby significantly transforming the commercial economy.
UASNets revolutionize the commercial sector by offering greater efficiency,
safety, and cost-effectiveness, highlighting their transformative impact. A
fundamental aspect of these new capabilities and changes is the collection of
data from rugged and remote areas. Due to their excellent mobility and
maneuverability, UAVs are employed to collect data from ground sensors in harsh
environments, such as natural disaster monitoring, border surveillance, and
emergency response monitoring. One major challenge in these scenarios is that
the movements of UAVs affect channel conditions and result in packet loss. Fast
movements of UAVs lead to poor channel conditions and rapid signal degradation,
resulting in packet loss. On the other hand, slow mobility of a UAV can cause
buffer overflows of the ground sensors, as newly arrived data is not promptly
collected by the UAV.
Our proposal to address this challenge is to minimize packet loss by jointly
optimizing the velocity controls and data collection schedules of multiple
UAVs.Furthermore, in UASNets, swift movements of UAVs result in poor channel
conditions and fast signal attenuation, leading to an extended age of
information (AoI). In contrast, slow movements of UAVs prolong flight time,
thereby extending the AoI of ground sensors.To address this challenge, we
propose a new mean-field flight resource allocation optimization to minimize
the AoI of sensory data.
Related papers
- AoI-Sensitive Data Forwarding with Distributed Beamforming in UAV-Assisted IoT [32.6091251316091]
This paper proposes a UAV-assisted system based on distributed beamforming to enhance age forwarding information (AoI) in Internet of Things (IoT)
We propose a deep reinforcement learning (DRL)-based algorithm to solve the problem, thereby enhancing stability and accelerate convergence.
arXiv Detail & Related papers (2025-02-13T07:48:36Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs)
We consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility.
We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space.
arXiv Detail & Related papers (2024-11-21T09:34:48Z) - Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds
Using PointNet [0.7067443325368975]
A critical prerequisite for the integration is equipping UAVs with enhanced situational awareness to ensure safe operations.
Our study leverages radar technology for novel end-to-end semantic segmentation of aerial point clouds to simultaneously identify multiple collision hazards.
To our knowledge, this is the first approach addressing simultaneous identification of multiple collision threats in an aerial setting, achieving a robust 94% accuracy.
arXiv Detail & Related papers (2023-11-06T16:04:58Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - UAV Based 5G Network: A Practical Survey Study [0.0]
Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks.
UAVs may transfer massive volumes of data in real-time by utilizing low latency and high-speed abilities of 5G networks.
arXiv Detail & Related papers (2022-12-27T00:34:59Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
We study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user.
We propose a novel multi-agent deep reinforcement learning framework, coined a graph attention exchange network (GAXNet)
GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.
arXiv Detail & Related papers (2021-05-22T12:43:25Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.