論文の概要: Neural Closure Models for Dynamical Systems
- arxiv url: http://arxiv.org/abs/2012.13869v1
- Date: Sun, 27 Dec 2020 05:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 00:14:12.019453
- Title: Neural Closure Models for Dynamical Systems
- Title(参考訳): 力学系におけるニューラルクロージャモデル
- Authors: Abhinav Gupta and Pierre F.J. Lermusiaux
- Abstract要約: 低忠実度モデルに対する非マルコフ閉閉パラメータ化を学習する新しい手法を開発した。
ニューラルクロージャモデル」はニューラル遅延微分方程式(nDDE)を用いた低忠実度モデルを強化する
非マルコヴィアンオーバーマルコヴィアンクロージャを使用することで、長期的精度が向上し、より小さなネットワークが必要であることを示した。
- 参考スコア(独自算出の注目度): 35.000303827255024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex dynamical systems are used for predictions in many applications.
Because of computational costs, models are however often truncated, coarsened,
or aggregated. As the neglected and unresolved terms along with their
interactions with the resolved ones become important, the usefulness of model
predictions diminishes. We develop a novel, versatile, and rigorous methodology
to learn non-Markovian closure parameterizations for low-fidelity models using
data from high-fidelity simulations. The new "neural closure models" augment
low-fidelity models with neural delay differential equations (nDDEs), motivated
by the Mori-Zwanzig formulation and the inherent delays in natural dynamical
systems. We demonstrate that neural closures efficiently account for truncated
modes in reduced-order-models, capture the effects of subgrid-scale processes
in coarse models, and augment the simplification of complex biochemical models.
We show that using non-Markovian over Markovian closures improves long-term
accuracy and requires smaller networks. We provide adjoint equation derivations
and network architectures needed to efficiently implement the new discrete and
distributed nDDEs. The performance of discrete over distributed delays in
closure models is explained using information theory, and we observe an optimal
amount of past information for a specified architecture. Finally, we analyze
computational complexity and explain the limited additional cost due to neural
closure models.
- Abstract(参考訳): 複雑な力学系は多くの応用において予測に使用される。
計算コストのため、モデルはしばしば切り詰められ、粗くなり、集約される。
無視され未解決な条件と解決された条件との相互作用が重要になるにつれて、モデル予測の有用性が低下する。
低忠実度モデルの非マルコフ閉包パラメータ化を高忠実度シミュレーションのデータを用いて学習するための新しい汎用的・厳密な手法を開発した。
ニューラルクロージャモデル」は、モリ・ズワンジグの定式化と自然力学系の固有遅延によって動機付けられた、神経遅延微分方程式(nDDE)を用いた低忠実度モデルを強化する。
ニューラルクロージャが低次モデルにおける停止モードを効率的に考慮し、粗いモデルにおけるサブグリッドスケールプロセスの効果を捉え、複雑な生化学モデルの単純化を促進することを実証する。
マルコフ閉包に非マルコフ閉包を用いることで、長期的精度が向上し、ネットワークが小さくなることを示す。
新しい離散分散nddesを効率的に実装するために必要となる随伴方程式導出とネットワークアーキテクチャを提供する。
閉包モデルにおける離散的分散遅延の性能を情報理論を用いて説明し、特定のアーキテクチャにおいて最適な過去の情報量を観察した。
最後に,計算複雑性を分析し,ニューラルクロージャモデルによる追加コストの制限を説明する。
関連論文リスト
- Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator [0.0]
クロージャモデルは、乱流や地球系のような複雑なマルチスケール力学系をシミュレートするのに広く用いられている。
明確なスケールを持たないシステムでは、一般化決定論的および局所閉包モデルは十分な能力に欠けることが多い。
ニューラル演算子と非局所クロージャモデルを構築するためのデータ駆動モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-06T05:21:31Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - Multi-fidelity reduced-order surrogate modeling [5.346062841242067]
我々は,次元削減と多要素ニューラルネットワークのサロゲートを組み合わせた新しいデータ駆動型戦略を提案する。
このサロゲート法により不安定性と過渡性の開始が良好に捉えられることを示す。
論文 参考訳(メタデータ) (2023-09-01T08:16:53Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。