論文の概要: Enhancing Person Re-Identification through Tensor Feature Fusion
- arxiv url: http://arxiv.org/abs/2312.10470v1
- Date: Sat, 16 Dec 2023 15:04:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 16:16:43.132908
- Title: Enhancing Person Re-Identification through Tensor Feature Fusion
- Title(参考訳): テンソル特徴融合による人物再同定の促進
- Authors: Akram Abderraouf Gharbi, Ammar Chouchane, Mohcene Bessaoudi,
Abdelmalik Ouamane, El ouanas Belabbaci
- Abstract要約: 本稿では,テンソル特徴表現とマルチ線形部分空間学習に基づく新しい人物認識システム(PRe-ID)を提案する。
提案手法は,事前学習したCNNを高レベル特徴抽出に活用する。
クロスビュー四分法解析(TXQDA)アルゴリズムは,マルチ線形部分空間学習に使用される。
- 参考スコア(独自算出の注目度): 0.5562294018150907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel person reidentification (PRe-ID) system
that based on tensor feature representation and multilinear subspace learning.
Our approach utilizes pretrained CNNs for high-level feature extraction, along
with Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG )
descriptors. Additionally, Cross-View Quadratic Discriminant Analysis (TXQDA)
algorithm is used for multilinear subspace learning, which models the data in a
tensor framework to enhance discriminative capabilities. Similarity measure
based on Mahalanobis distance is used for matching between training and test
pedestrian images. Experimental evaluations on VIPeR and PRID450s datasets
demonstrate the effectiveness of our method.
- Abstract(参考訳): 本稿では,テンソル特徴表現とマルチ線形部分空間学習に基づく新しい人物認識システム(PRe-ID)を提案する。
提案手法は,高度特徴抽出のための事前学習CNNと,Local Maximal Occurrence (LOMO) および Gaussian Of Gaussian (GOG) 記述子を用いた。
さらに、TXQDA(Cross-View Quadratic Discriminant Analysis)アルゴリズムは、テンソルフレームワーク内のデータをモデル化して識別能力を高めるマルチ線形部分空間学習に使用される。
マハラノビス距離に基づく類似度測定は、訓練と歩行者画像の照合に使用される。
VIPeRおよびPRID450sデータセットの実験的評価により,本手法の有効性が示された。
関連論文リスト
- USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
本稿では,特徴デコレーションに基づく統一骨格に基づくDense Representation Learningフレームワークを提案する。
我々のアプローチは現在のSOTA(State-of-the-art)アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-12-12T12:20:27Z) - Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection [28.442470704073767]
本稿では,分布外データと分布内データとを分離する階層型視覚カテゴリーモデリング手法を提案する。
我々は、CIFAR、iNaturalist、SUN、Places、Textures、ImageNet-O、OpenImage-Oを含む7つの人気のあるベンチマーク実験を行った。
我々の視覚表現は古典的手法で学習した特徴と比較して競争力がある。
論文 参考訳(メタデータ) (2024-08-28T07:05:46Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Advancing Person Re-Identification: Tensor-based Feature Fusion and
Multilinear Subspace Learning [0.6829272097221595]
特徴表現と多線形部分空間学習を組み合わせた新しいPRe-IDシステムを提案する。
提案手法は,CNN(Creative Conrimial Neural Networks)を強力な特徴抽出器として活用する。
提案手法は,VIPeR,GRID,PRID450の3つのデータセットを用いて実験を行うことにより評価する。
論文 参考訳(メタデータ) (2023-12-24T16:19:22Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
我々は,多次元関数型データを分類するFDNN(Functional Deep Neural Network)と呼ばれる新しい手法を提案する。
具体的には、将来のデータ関数のクラスラベルを予測するために使用されるトレーニングデータの原則コンポーネントに基づいて、ディープニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-05-17T19:22:48Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。