Generalized Category Discovery with Large Language Models in the Loop
- URL: http://arxiv.org/abs/2312.10897v2
- Date: Mon, 27 May 2024 03:27:57 GMT
- Title: Generalized Category Discovery with Large Language Models in the Loop
- Authors: Wenbin An, Wenkai Shi, Feng Tian, Haonan Lin, QianYing Wang, Yaqiang Wu, Mingxiang Cai, Luyan Wang, Yan Chen, Haiping Zhu, Ping Chen,
- Abstract summary: We propose Loop, an end-to-end active-learning framework that introduces Large Language Models into the training loop.
We show that Loop outperforms SOTA models by a large margin and generates accurate category names for the discovered clusters.
- Score: 10.440661581492723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized Category Discovery (GCD) is a crucial task that aims to recognize both known and novel categories from a set of unlabeled data by utilizing a few labeled data with only known categories. Due to the lack of supervision and category information, current methods usually perform poorly on novel categories and struggle to reveal semantic meanings of the discovered clusters, which limits their applications in the real world. To mitigate the above issues, we propose Loop, an end-to-end active-learning framework that introduces Large Language Models (LLMs) into the training loop, which can boost model performance and generate category names without relying on any human efforts. Specifically, we first propose Local Inconsistent Sampling (LIS) to select samples that have a higher probability of falling to wrong clusters, based on neighborhood prediction consistency and entropy of cluster assignment probabilities. Then we propose a Scalable Query strategy to allow LLMs to choose true neighbors of the selected samples from multiple candidate samples. Based on the feedback from LLMs, we perform Refined Neighborhood Contrastive Learning (RNCL) to pull samples and their neighbors closer to learn clustering-friendly representations. Finally, we select representative samples from clusters corresponding to novel categories to allow LLMs to generate category names for them. Extensive experiments on three benchmark datasets show that Loop outperforms SOTA models by a large margin and generates accurate category names for the discovered clusters. Code and data are available at https://github.com/Lackel/LOOP.
Related papers
- Text Clustering as Classification with LLMs [6.030435811868953]
This study presents a novel framework for text clustering that effectively leverages the in-context learning capacity of Large Language Models (LLMs)
Instead of fine-tuning embedders, we propose to transform the text clustering into a classification task via LLM.
Our framework has been experimentally proven to achieve comparable or superior performance to state-of-the-art clustering methods.
arXiv Detail & Related papers (2024-09-30T16:57:34Z) - Unsupervised Multimodal Clustering for Semantics Discovery in Multimodal Utterances [24.142013877384603]
This paper introduces a novel unsupervised multimodal clustering method (UMC), making a pioneering contribution to this field.
UMC introduces a unique approach to constructing augmentation views for multimodal data, which are then used to perform pre-training.
We show remarkable improvements of 2-6% scores in clustering metrics over state-of-the-art methods, marking the first successful endeavor in this domain.
arXiv Detail & Related papers (2024-05-21T13:24:07Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
We show that large language models can amplify an expert's guidance to enable query-efficient, few-shot semi-supervised text clustering.
We find incorporating LLMs in the first two stages can routinely provide significant improvements in cluster quality.
arXiv Detail & Related papers (2023-07-02T09:17:11Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Waffling around for Performance: Visual Classification with Random Words
and Broad Concepts [121.60918966567657]
WaffleCLIP is a framework for zero-shot visual classification which simply replaces LLM-generated descriptors with random character and word descriptors.
We conduct an extensive experimental study on the impact and shortcomings of additional semantics introduced with LLM-generated descriptors.
arXiv Detail & Related papers (2023-06-12T17:59:48Z) - Actively Supervised Clustering for Open Relation Extraction [42.114747195195655]
We present a novel setting, named actively supervised clustering for OpenRE.
The key to the setting is selecting which instances to label.
We propose a new strategy, which is applicable to dynamically discover clusters of unknown relations.
arXiv Detail & Related papers (2023-06-08T06:55:02Z) - Interpretable Deep Clustering for Tabular Data [7.972599673048582]
Clustering is a fundamental learning task widely used in data analysis.
We propose a new deep-learning framework that predicts interpretable cluster assignments at the instance and cluster levels.
We show that the proposed method can reliably predict cluster assignments in biological, text, image, and physics datasets.
arXiv Detail & Related papers (2023-06-07T21:08:09Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.