論文の概要: Visualizing High-Dimensional Configuration Spaces: A Comprehensive Analytical Approach
- arxiv url: http://arxiv.org/abs/2312.10918v2
- Date: Wed, 24 Apr 2024 07:26:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:08:00.964450
- Title: Visualizing High-Dimensional Configuration Spaces: A Comprehensive Analytical Approach
- Title(参考訳): 高次元構成空間の可視化:包括的解析的アプローチ
- Authors: Jorge Ocampo Jimenez, Wael Suleiman,
- Abstract要約: マニピュレータロボットの高次元Cs表現を2次元形式で可視化するための新しい手法を提案する。
元の寸法を小さくすることなく高次元Cs近似の定性的評価を行うための新しいツールを提供する。
- 参考スコア(独自算出の注目度): 0.4143603294943439
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The representation of a Configuration Space C plays a vital role in accelerating the finding of a collision-free path for sampling-based motion planners where the majority of computation time is spent in collision checking of states. Traditionally, planners evaluate C's representations through limited evaluations of collision-free paths using the collision checker or by reducing the dimensionality of C for visualization. However, a collision checker may indicate high accuracy even when only a subset of the original C is represented; limiting the motion planner's ability to find paths comparable to those in the original C. Additionally, dealing with high-dimensional Cs is challenging, as qualitative evaluations become increasingly difficult in dimensions higher than three, where reduced-dimensional C evaluation may decrease accuracy in cluttered environments. In this paper, we present a novel approach for visualizing representations of high-dimensional Cs of manipulator robots in a 2D format. We provide a new tool for qualitative evaluation of high-dimensional Cs approximations without reducing the original dimension. This enhances our ability to compare the accuracy and coverage of two different high-dimensional Cs. Leveraging the kinematic chain of manipulator robots and human color perception, we show the efficacy of our method using a 7-degree-of-freedom CS of a manipulator robot. This visualization offers qualitative insights into the joint boundaries of the robot and the coverage of collision state combinations without reducing the dimensionality of the original data. To support our claim, we conduct a numerical evaluation of the proposed visualization.
- Abstract(参考訳): 構成空間Cの表現は、状態の衝突チェックに計算時間の大半が費やされるサンプリングベースモーションプランナーのための衝突のない経路の発見を加速する上で重要な役割を担っている。
伝統的に、プランナーは衝突チェッカーを用いて衝突のない経路を限定的に評価したり、可視化のためにCの次元を小さくすることでCの表現を評価する。
しかし、衝突チェッカーは、元のCのサブセットだけが表現されている場合でも高い精度を示すことができ、また、移動プランナーが元のCのパスに匹敵するパスを見つける能力を制限することができる。
本稿では,マニピュレータロボットの高次元Cs表現を2次元形式で可視化するための新しい手法を提案する。
元の寸法を小さくすることなく高次元Cs近似の定性的評価を行うための新しいツールを提供する。
これにより、2つの異なる高次元Cの精度とカバレッジを比較する能力が向上する。
マニピュレータロボットのキネマティックチェーンと人間の色知覚を利用して,マニピュレータロボットの7自由度CSを用いて,本手法の有効性を示す。
この可視化は、ロボットの関節の境界と衝突状態の組み合わせのカバレッジに関する質的な洞察を、元のデータの次元性を低下させることなく提供する。
本主張を支持するために,提案した可視化の数値的な評価を行う。
関連論文リスト
- Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE [10.103826383675646]
TRACEは次元還元技術によって生成された2次元埋め込みの質を分析するツールである。
インタラクティブなブラウザベースのインターフェースにより、ユーザは様々な埋め込みを探索し、ポイントワイドな埋め込み品質を視覚的に評価することができる。
論文 参考訳(メタデータ) (2024-06-18T14:57:31Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
外科手術のシーングラフ生成(SGG)は、手術室(OR)におけるホモロジー認知知能の増強に不可欠である
これまでの研究は主に多段階学習に依存しており、生成したセマンティックシーングラフはポーズ推定とオブジェクト検出を伴う中間プロセスに依存している。
本研究では,S2Former-OR(S2Former-OR)と呼ばれるORにおけるSGGのための新しいシングルステージバイモーダルトランスフォーマフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T11:40:49Z) - COTR: Compact Occupancy TRansformer for Vision-based 3D Occupancy Prediction [60.87168562615171]
自動運転コミュニティは、3Dの占有率予測に大きな関心を示している。
我々は、幾何学的占有率エンコーダと意味論的グループデコーダを備えたコンパクト占有率TRansformer (COTR)を提案する。
COTRは、8%から15%の相対的な改善でベースラインを上回っている。
論文 参考訳(メタデータ) (2023-12-04T14:23:18Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Cryo-forum: A framework for orientation recovery with uncertainty
measure with the application in cryo-EM image analysis [0.0]
本稿では,10次元特徴ベクトルを用いて方向を表現し,予測方向を単位四元数として導出し,不確実な距離で補足する擬似制約擬似プログラムを提案する。
本手法は,2次元Creo-EM画像からの向きをエンドツーエンドで効果的に復元することを示し,不確実性を含むことにより,データセットを3次元レベルで直接クリーンアップすることができる。
論文 参考訳(メタデータ) (2023-07-19T09:09:24Z) - A Distance-Geometric Method for Recovering Robot Joint Angles From an
RGB Image [7.971699294672282]
本稿では,ロボットマニピュレータの関節角度を現在の構成の1つのRGB画像のみを用いて検索する手法を提案する。
提案手法は,構成空間の距離幾何学的表現に基づいて,ロボットの運動モデルに関する知識を活用する。
論文 参考訳(メタデータ) (2023-01-05T12:57:45Z) - Hyperbolic Cosine Transformer for LiDAR 3D Object Detection [6.2216654973540795]
我々は,LiDAR点雲から3次元物体を検出するための2段階双曲型コサイントランス (ChTR3D) を提案する。
提案したChTR3Dは、線形複雑性におけるコッシュアテンションを適用して、点間のリッチな文脈関係を符号化することで、提案を洗練する。
広く使用されているKITTIデータセットの実験では、バニラアテンションと比較して、コッシュアテンションは競合性能による推論速度を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-11-10T13:54:49Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
本稿では,ロボットアームの関節構成を,モデルに先入観を持たずにRGBまたはRGB-D画像のシーケンスから推定する,教師なし視覚ベースシステムを提案する。
我々は,古典幾何学的定式化と深層学習を組み合わせることで,この課題を解決するために,極性多剛体制約を拡張した。
論文 参考訳(メタデータ) (2020-11-30T20:46:48Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。