On Removing the Classical-Quantum Boundary
- URL: http://arxiv.org/abs/2312.11288v1
- Date: Mon, 18 Dec 2023 15:27:40 GMT
- Title: On Removing the Classical-Quantum Boundary
- Authors: Khaled Mnaymneh
- Abstract summary: We argue that it is the assumption of counterfactual definiteness and not locality or realism that results in Bell inequality violations.
An implication here is that a local hidden variable theory, in the configuration space of classical mechanics cannot be ruled out.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that it is the assumption of counterfactual definiteness and not
locality or realism that results in Bell inequality violations. Furthermore,
this assumption of counterfactual definiteness is not supported in classical
mechanics. This means that the Bell inequality must fail classically,
effectively removing the classical-quantum boundary, a conclusion prophesized
by Bell himself. An implication here is that a local hidden variable theory, in
the configuration space of classical mechanics cannot be ruled out. One very
surprising result is that classical mechanics, in the context of Hamiltons
stationary principle, may in fact have stronger correlations than quantum
mechanics, in that it may be the key to beat Tsirelsons bound.
Related papers
- Quantum gravity with dynamical wave-function collapse via a classical
scalar field [0.0]
In hybrid classical-quantum theories, the dynamics of the classical system induce classicality of the quantum system.
This work introduces a classical-quantum model whereby quantum gravity interacts with a classical scalar field.
arXiv Detail & Related papers (2024-02-26T21:07:05Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Causal networks and freedom of choice in Bell's theorem [0.7637291629898925]
We show that the level of measurement dependence can be quantitatively upper bounded if we arrange the Bell test within a network.
We also prove that these results can be adapted in order to derive non-linear Bell inequalities for a large class of causal networks.
arXiv Detail & Related papers (2021-05-12T15:14:17Z) - Explicit construction of Local Hidden Variables for any quantum theory
up to any desired accuracy [0.0]
The machinery of quantum mechanics is fully capable of describing a single realistic world.
Bell's theorem is not applicable in the cases considered.
The potential importance of our construction in model building is discussed.
arXiv Detail & Related papers (2021-03-07T12:19:57Z) - Bell Non-Locality in Many Body Quantum Systems with Exponential Decay of
Correlations [0.0]
This paper uses Bell-inequalities as a tool to explore non-classical physical behaviours.
We show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount.
arXiv Detail & Related papers (2020-06-09T22:41:44Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.