論文の概要: Social Learning: Towards Collaborative Learning with Large Language
Models
- arxiv url: http://arxiv.org/abs/2312.11441v1
- Date: Mon, 18 Dec 2023 18:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 18:56:02.741044
- Title: Social Learning: Towards Collaborative Learning with Large Language
Models
- Title(参考訳): 社会学習:大規模言語モデルによる協調学習を目指して
- Authors: Amirkeivan Mohtashami, Florian Hartmann, Sian Gooding, Lukas Zilka,
Matt Sharifi, Blaise Aguera y Arcas
- Abstract要約: 大規模言語モデル(LLM)の文脈における「社会学習」の枠組みを紹介する。
LLM間の知識伝達のための2つのアプローチを提案し,評価する。
これらの手法による性能は,元のラベルとプロンプトを用いた結果に匹敵することを示す。
- 参考スコア(独自算出の注目度): 10.24107243529341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the framework of "social learning" in the context of large
language models (LLMs), whereby models share knowledge with each other in a
privacy-aware manner using natural language. We present and evaluate two
approaches for knowledge transfer between LLMs. In the first scenario, we allow
the model to generate abstract prompts aiming to teach the task. In our second
approach, models transfer knowledge by generating synthetic examples. We
evaluate these methods across diverse datasets and quantify memorization as a
proxy for privacy loss. These techniques inspired by social learning yield
promising results with low memorization of the original data. In particular, we
show that performance using these methods is comparable to results with the use
of original labels and prompts. Our work demonstrates the viability of social
learning for LLMs, establishes baseline approaches and highlights several
unexplored areas for future work.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) の文脈における「社会学習」の枠組みを紹介する。
LLM間の知識伝達のための2つのアプローチを提案し,評価する。
最初のシナリオでは、モデルをタスクを教えるための抽象的なプロンプトを生成する。
第2のアプローチでは、モデルが合成例を生成して知識を伝達する。
我々は,これらの手法を多様なデータセットにわたって評価し,プライバシ損失のプロキシとして記憶の定量化を行う。
社会学習に触発されたこれらの手法は、元のデータを低記憶化して有望な結果をもたらす。
特に,これらの手法を用いた性能は,元のラベルとプロンプトを用いた結果に匹敵することを示す。
我々の研究は、LCMの社会的学習の可能性を実証し、ベースラインのアプローチを確立し、将来の研究のために探索されていない領域をいくつか強調する。
関連論文リスト
- Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Tracking the perspectives of interacting language models [11.601000749578647]
大規模言語モデル(LLM)は前例のない速度で高品質な情報を生成することができる。
これらのモデルが社会に浸透し続ければ、それらが生み出すコンテンツはますますデータベースに浸透していくだろう。
論文 参考訳(メタデータ) (2024-06-17T17:20:16Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。