論文の概要: Low-Latency ML Inference by Grouping Correlated Data Objects and
Computation
- arxiv url: http://arxiv.org/abs/2312.11488v1
- Date: Thu, 30 Nov 2023 16:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 13:38:31.845202
- Title: Low-Latency ML Inference by Grouping Correlated Data Objects and
Computation
- Title(参考訳): 関連データオブジェクトのグルーピングと計算による低レイテンシML推論
- Authors: Thiago Garrett, Weijia Song, Roman Vitenberg, Ken Birman
- Abstract要約: アプリケーション固有のデータアクセス相関を簡単に表現できる新しい相関グルーピング機構を提案する。
レイテンシに敏感なMLベースのアプリケーションに基づく実験は、標準手法の限界を確認する。
提案するメカニズムは,作業負荷の増加とスケールアウトの増加に伴い,レイテンシの大幅な低減,ノード利用率の向上を実現している。
- 参考スコア(独自算出の注目度): 0.20482269513546453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ML inference workflows often require low latency and high throughput, yet we
lack good options for addressing this need. Techniques that reduce latency in
other streaming settings (such as caching and optimization-driven scheduling)
are of limited value because ML data dependencies are often very large and can
change dramatically depending on the triggering event. In this work, we propose
a novel correlation grouping mechanism that makes it easier for developers to
express application-specific data access correlations, enabling coordinated
management of data objects in server clusters hosting streaming inference
tasks. Experiments based on a latency-sensitive ML-based application confirm
the limitations of standard techniques while showing that our solution yields
dramatically better performance. The proposed mechanism is able to maintain
significantly lower and more consistent latency, achieves higher node
utilization as workload and scale-out increase, and yet requires only minor
changes to the code implementing the application.
- Abstract(参考訳): ML推論ワークフローは、低レイテンシと高いスループットを必要とすることが多いが、このニーズに対処するための優れた選択肢がない。
他のストリーミング設定(キャッシュや最適化駆動スケジューリングなど)のレイテンシを低減するテクニックは、MLデータの依存関係が非常に大きく、トリガーイベントによって劇的に変化するため、制限された値である。
本稿では,アプリケーション固有のデータアクセス相関の表現を容易にし,ストリーミング推論タスクをホストするサーバクラスタ内のデータオブジェクトの協調管理を可能にする,新たな相関グループ化機構を提案する。
レイテンシに敏感なMLベースのアプリケーションに基づく実験では、標準手法の限界を確認しながら、ソリューションが劇的にパフォーマンスが向上することを示した。
提案されたメカニズムは、かなり低いレイテンシと一貫性を維持でき、ワークロードやスケールアウトの増加に伴ってノードの利用率を高くすることができるが、アプリケーションを実装するコードに小さな変更を加えるだけでよい。
関連論文リスト
- ALISE: Accelerating Large Language Model Serving with Speculative Scheduling [7.367068885621016]
大規模言語モデル(LLM)は、現代の人工知能(AGI)の展望における革命的な進歩を表している。
本稿では, ALISE という新しい効率的な LLM 推論サービスフレームワークを提案する。
ALISEは,AlpacaデータセットとShareGPTデータセットと同じレイテンシ制約の下で,最大1.8xと2.1xの推論処理のスループットを向上することを示す。
論文 参考訳(メタデータ) (2024-10-31T00:58:11Z) - When Less is More: Achieving Faster Convergence in Distributed Edge Machine Learning [0.0]
リソース制約のあるエッジデバイス上での分散機械学習(DML)は、現実世界のアプリケーションにとって大きな可能性を秘めている。
本稿では,エッジデバイス上での効率的なDMLのための新しい確率的フレームワークであるHermesを提案する。
実世界の異種資源制約環境に対する評価は,Hermesが最先端の手法に比べて高速な収束を実現することを示す。
論文 参考訳(メタデータ) (2024-10-27T16:17:03Z) - Fast Inference for Augmented Large Language Models [14.195265302357148]
Augmented Large Language Models (LLM)は、APIコールを通じて外部データソースを統合することで、スタンドアロンのLLMの機能を強化する。
SJF(Shortest Job First)のような従来のサイズベースのスケジューリングアルゴリズムは、完了時間の最小化にはあまり効果がない。
拡張LLMのための新しいLLM推論フレームワークであるLAMPSを提案する。
論文 参考訳(メタデータ) (2024-10-23T19:53:30Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServeは、プリエンプティブルインスタンスにシステムを提供する最初の分散大規模言語モデルである。
SpotServeは、既存のLLMサービスシステムと比較して、P99テールのレイテンシを2.4~9.1倍削減できることを示す。
また、SpotServeはプリエンプティブインスタンスの価格優位性を利用して、オンデマンドインスタンスのみを使用する場合と比較して54%の金銭的コストを節約できることも示しています。
論文 参考訳(メタデータ) (2023-11-27T06:31:17Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Fast Distributed Inference Serving for Large Language Models [12.703624317418237]
大規模言語モデル(LLM)のための分散推論サービスシステムであるFastServeについて述べる。
FastServeはLLM推論の自己回帰パターンを利用して、各出力トークンの粒度のプリエンプションを可能にする。
我々は,FastServeのシステムプロトタイプを構築し,最先端のソリューションであるvLLMと比較して,同じ平均および末尾遅延条件下でのスループットを最大31.4xと17.9xに改善したことを示す。
論文 参考訳(メタデータ) (2023-05-10T06:17:50Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - OFedQIT: Communication-Efficient Online Federated Learning via
Quantization and Intermittent Transmission [7.6058140480517356]
オンライン連合学習(OFL)は、分散ストリーミングデータから非線形関数(またはモデル)のシーケンスを協調的に学習する、有望なフレームワークである。
本稿では、量子化と断続伝送を用いた通信効率の高いOFLアルゴリズム(OFedQIT)を提案する。
分析の結果,OfedQITは優れた学習精度を維持しつつ,OfedAvgの欠点に対処できることがわかった。
論文 参考訳(メタデータ) (2022-05-13T07:46:43Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。