KGLens: Towards Efficient and Effective Knowledge Probing of Large Language Models with Knowledge Graphs
- URL: http://arxiv.org/abs/2312.11539v3
- Date: Thu, 1 Aug 2024 03:19:03 GMT
- Title: KGLens: Towards Efficient and Effective Knowledge Probing of Large Language Models with Knowledge Graphs
- Authors: Shangshang Zheng, He Bai, Yizhe Zhang, Yi Su, Xiaochuan Niu, Navdeep Jaitly,
- Abstract summary: Large Language Models (LLMs) might hallucinate facts, while curated Knowledge Graph (KGs) are typically factually reliable.
Measuring the alignment between KGs and LLMs can effectively probe the factualness and identify the knowledge blind spots of LLMs.
We present KGLens, a Thompson-inspired framework aimed at effectively and efficiently measuring the alignment between KGs and LLMs.
- Score: 22.53643028991214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) might hallucinate facts, while curated Knowledge Graph (KGs) are typically factually reliable especially with domain-specific knowledge. Measuring the alignment between KGs and LLMs can effectively probe the factualness and identify the knowledge blind spots of LLMs. However, verifying the LLMs over extensive KGs can be expensive. In this paper, we present KGLens, a Thompson-sampling-inspired framework aimed at effectively and efficiently measuring the alignment between KGs and LLMs. KGLens features a graph-guided question generator for converting KGs into natural language, along with a carefully designed importance sampling strategy based on parameterized KG structure to expedite KG traversal. Our simulation experiment compares the brute force method with KGLens under six different sampling methods, demonstrating that our approach achieves superior probing efficiency. Leveraging KGLens, we conducted in-depth analyses of the factual accuracy of ten LLMs across three large domain-specific KGs from Wikidata, composing over 19K edges, 700 relations, and 21K entities. Human evaluation results indicate that KGLens can assess LLMs with a level of accuracy nearly equivalent to that of human annotators, achieving 95.7% of the accuracy rate.
Related papers
- Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.
This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - Can LLMs be Good Graph Judger for Knowledge Graph Construction? [33.958327252291]
In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges.
We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement.
Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods.
arXiv Detail & Related papers (2024-11-26T12:46:57Z) - Simple is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.
We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.
GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering [30.12049172634714]
This study explores whether Knowledge Graphs can make Large Language Models (LLMs) more trustworthy in an open-ended setting.
OKGQA is a benchmark specifically designed to assess LLMs enhanced with Knowledge Graphs under open-ended, real-world question answering scenarios.
OKGQA-P is a benchmark variant to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated.
arXiv Detail & Related papers (2024-10-10T16:29:21Z) - MKGL: Mastery of a Three-Word Language [48.04522048179973]
We introduce a specialized KG Language (KGL), where a sentence precisely consists of an entity noun, a relation verb, and ends with another entity noun.
Despite KGL's unfamiliar vocabulary to the LLM, we facilitate its learning through a tailored dictionary and illustrative sentences.
Our results reveal that LLMs can achieve fluency in KGL, drastically reducing errors compared to conventional KG embedding methods.
arXiv Detail & Related papers (2024-10-10T01:39:26Z) - GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models [7.995716933782121]
We propose a novel completion framework called textbfGenerative textbfSubgraph-based KGC (GS-KGC)
This framework primarily includes a subgraph partitioning algorithm designed to generate negatives and neighbors.
Experiments conducted on four common KGC datasets highlight the advantages of the proposed GS-KGC.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Knowledge Graph Large Language Model (KG-LLM) for Link Prediction [43.55117421485917]
We introduce the Knowledge Graph Large Language Model (KG-LLM), a novel framework that leverages large language models (LLMs) for knowledge graph tasks.
We first convert structured knowledge graph data into natural language and then use these natural language prompts to fine-tune LLMs.
To show the efficacy of the KG-LLM Framework, we fine-tune three leading LLMs within this framework, including Flan-T5, LLaMa2 and Gemma.
arXiv Detail & Related papers (2024-03-12T04:47:29Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
knowledge graph (KG) embeddings with model parameters become increasingly costly.
Current prompting methods often rely on a trial-and-error approach.
We show that unordered linearized triples are more effective for LLMs' understanding of KGs compared to fluent NL text.
arXiv Detail & Related papers (2024-02-18T10:44:03Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
We propose an autonomous LLM-based agent framework, called KG-Agent.
In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory.
To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG.
arXiv Detail & Related papers (2024-02-17T02:07:49Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.