論文の概要: StarVector: Generating Scalable Vector Graphics Code from Images
- arxiv url: http://arxiv.org/abs/2312.11556v1
- Date: Sun, 17 Dec 2023 08:07:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 18:32:59.643279
- Title: StarVector: Generating Scalable Vector Graphics Code from Images
- Title(参考訳): StarVector:画像からスケーラブルなベクターグラフィックスコードを生成する
- Authors: Juan A. Rodriguez, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez,
David Vazquez, Christopher Pal, and Marco Pedersoli
- Abstract要約: 本稿では,コード生成大言語モデル(CodeLLM)と視覚モデルを統合する多モードSVG生成モデルであるStarを紹介する。
提案手法では,CLIP画像を用いて画素ベースの画像から視覚表現を抽出し,アダプタモジュールを介して視覚トークンに変換する。
以上の結果から,従来のSVG生成技術よりも視覚的品質と複雑さが著しく向上していることが示唆された。
- 参考スコア(独自算出の注目度): 13.995963187283321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scalable Vector Graphics (SVGs) have become integral in modern image
rendering applications due to their infinite scalability in resolution,
versatile usability, and editing capabilities. SVGs are particularly popular in
the fields of web development and graphic design. Existing approaches for SVG
modeling using deep learning often struggle with generating complex SVGs and
are restricted to simpler ones that require extensive processing and
simplification. This paper introduces StarVector, a multimodal SVG generation
model that effectively integrates Code Generation Large Language Models
(CodeLLMs) and vision models. Our approach utilizes a CLIP image encoder to
extract visual representations from pixel-based images, which are then
transformed into visual tokens via an adapter module. These visual tokens are
pre-pended to the SVG token embeddings, and the sequence is modeled by the
StarCoder model using next-token prediction, effectively learning to align the
visual and code tokens. This enables StarVector to generate unrestricted SVGs
that accurately represent pixel images. To evaluate StarVector's performance,
we present SVG-Bench, a comprehensive benchmark for evaluating SVG methods
across multiple datasets and relevant metrics. Within this benchmark, we
introduce novel datasets including SVG-Stack, a large-scale dataset of
real-world SVG examples, and use it to pre-train StarVector as a large
foundation model for SVGs. Our results demonstrate significant enhancements in
visual quality and complexity handling over current methods, marking a notable
advancement in SVG generation technology. Code and models:
https://github.com/joanrod/star-vector
- Abstract(参考訳): スケーラビリティベクターグラフィックス(SVG)は、解像度の無限のスケーラビリティ、汎用性、編集能力のために、現代の画像レンダリングアプリケーションに不可欠なものになっている。
SVGは特にウェブ開発やグラフィックデザインの分野で人気がある。
ディープラーニングを用いた既存のSVGモデリングのアプローチは、複雑なSVGの生成に苦しむことが多く、広範囲な処理と単純化を必要とする単純なものに制限されている。
本稿では,コード生成大規模言語モデル(codellm)と視覚モデルを統合するマルチモーダルsvg生成モデルであるstarvectorを紹介する。
提案手法では,CLIP画像エンコーダを用いて画素ベースの画像から視覚表現を抽出し,アダプタモジュールを介して視覚トークンに変換する。
これらのビジュアルトークンはsvgトークンの埋め込みに事前設定され、シーケンスは次の予測を使ってstarcoderモデルによってモデル化され、視覚的トークンとコードトークンの整合を効果的に学習する。
これによりStarVectorは、ピクセルイメージを正確に表現する無制限のSVGを生成することができる。
starvectorのパフォーマンスを評価するために、複数のデータセットと関連するメトリクスにわたってsvgメソッドを評価するための包括的なベンチマークであるsvg-benchを提案する。
本ベンチマークでは,実世界のSVGサンプルの大規模データセットであるSVG-Stackなどの新しいデータセットを導入し,SVGの大規模基盤モデルとしてStarVectorを事前学習する。
以上の結果から,現在の手法よりも視覚的品質と複雑性の取り扱いが著しく向上し,SVG生成技術の進歩が目覚ましいことが示唆された。
コードとモデル: https://github.com/joanrod/star-vector
関連論文リスト
- Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision [20.325246638505714]
本稿では,GRIMOIREというテキスト誘導型生成モデルを紹介し,画像をベクトル形状に再構成して離散コードブックにマッピングする方法を提案する。
データから直接の監視を必要とする既存のモデルとは異なり、GRIMOIREはベクトル生成モデリングをはるかに多くのデータに開放するイメージ監督のみを使用して学習する。
論文 参考訳(メタデータ) (2024-10-08T12:41:31Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
SVGDreamerと呼ばれる新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
SIVEプロセスは、前景オブジェクトと背景への合成の分解を可能にする。
VPSDアプローチは、形状の平滑化、彩度の過飽和、多様性の制限、収束の遅い問題に対処する。
論文 参考訳(メタデータ) (2023-12-27T08:50:01Z) - Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images
with Vision Language Models [19.145503353922038]
本稿では,Simple-SVG-Generation (Stextsuperscript2VGtextsuperscript2)を提案する。
本手法は,正確かつ簡便なSVGの生成と,人間の可読性と理解の整合性に重点を置いている。
その結果,従来のSVG生成手法よりも明らかに改善された結果が得られた。
論文 参考訳(メタデータ) (2023-11-27T05:20:11Z) - SAMVG: A Multi-stage Image Vectorization Model with the Segment-Anything
Model [59.40189857428461]
画像をSVG(Scalable Vector Graphics)にベクトル化する多段階モデルを提案する。
第一に、SAMVGはSegment-Anything Modelによって提供される一般的な画像セグメンテーションを使い、新しいフィルタリング手法を用いて画像全体の最も高密度なセグメンテーションマップを識別する。
次に、SAMVGは欠落したコンポーネントを特定し、SVGにより詳細なコンポーネントを追加する。
論文 参考訳(メタデータ) (2023-11-09T11:11:56Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
シーン内の車両の動きを予想することは、安全な自動運転システムにとって重要な問題である。
この目的のために、シーンのインフラの理解は、しばしば将来の軌跡を予測する主要な手がかりである。
提案手法のほとんどが逆逆変換方式のシーンを表現しており、近年のアプローチではカスタムベクトル化方式が採用されている。
論文 参考訳(メタデータ) (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
本稿では,複雑なSVGアイコンの生成と操作のために,DeepSVGと呼ばれる新しい階層型生成ネットワークを提案する。
我々のアーキテクチャは、その形状自体をエンコードする低レベルのコマンドから、効果的に高レベルの形状を分離します。
我々のネットワークは、多様なベクトルグラフィックスを正確に再構築し、強力なアニメーションツールとして機能することを実証する。
論文 参考訳(メタデータ) (2020-07-22T09:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。