論文の概要: NeuralSVG: An Implicit Representation for Text-to-Vector Generation
- arxiv url: http://arxiv.org/abs/2501.03992v1
- Date: Tue, 07 Jan 2025 18:50:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:49:19.890717
- Title: NeuralSVG: An Implicit Representation for Text-to-Vector Generation
- Title(参考訳): NeuralSVG:テキストからベクター生成のための暗黙の表現
- Authors: Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, Daniel Cohen-Or,
- Abstract要約: 本稿では,テキストプロンプトからベクトルグラフィックスを生成する暗黙的なニューラル表現であるNeuralSVGを提案する。
生成したSVGの層構造を促進するために,ドロップアウトに基づく正規化手法を導入する。
ニューラルSVGは、構造化された柔軟なSVGを生成する際に、既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 54.4153300455889
- License:
- Abstract: Vector graphics are essential in design, providing artists with a versatile medium for creating resolution-independent and highly editable visual content. Recent advancements in vision-language and diffusion models have fueled interest in text-to-vector graphics generation. However, existing approaches often suffer from over-parameterized outputs or treat the layered structure - a core feature of vector graphics - as a secondary goal, diminishing their practical use. Recognizing the importance of layered SVG representations, we propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts. Inspired by Neural Radiance Fields (NeRFs), NeuralSVG encodes the entire scene into the weights of a small MLP network, optimized using Score Distillation Sampling (SDS). To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique that strengthens the standalone meaning of each shape. We additionally demonstrate that utilizing a neural representation provides an added benefit of inference-time control, enabling users to dynamically adapt the generated SVG based on user-provided inputs, all with a single learned representation. Through extensive qualitative and quantitative evaluations, we demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
- Abstract(参考訳): ベクトルグラフィックスはデザインにおいて不可欠であり、解像度に依存しない高度に編集可能なビジュアルコンテンツを作成するための多彩な媒体をアーティストに提供する。
近年の視覚言語と拡散モデルの発展は、テキスト・ツー・ベクター・グラフィックス生成への関心を高めている。
しかし、既存のアプローチは、しばしば過度にパラメータ化された出力に悩まされるか、ベクターグラフィックスの中核的な特徴である階層構造を二次的な目標として扱い、実用性を低下させる。
層状SVG表現の重要性を認識し,テキストプロンプトからベクトルグラフィックスを生成する暗黙的ニューラルネットワーク表現であるNeuralSVGを提案する。
Neural Radiance Fields (NeRF)にインスパイアされたNeuralSVGは、シーン全体を小さなMLPネットワークの重みにエンコードし、スコア蒸留サンプリング (SDS) を用いて最適化する。
生成したSVGの層構造を促進するために,各形状の独立性を高めるドロップアウトに基づく正規化手法を導入する。
さらに、ニューラル表現を利用することで、推論時間制御の利点が付加され、ユーザは、ユーザが提供する入力に基づいて、生成したSVGを動的に適応できる。
定性的かつ定量的な評価を通じて、ニューラルSVGは構造化された柔軟なSVGを生成する際に既存の手法よりも優れていることを示す。
関連論文リスト
- Chat2SVG: Vector Graphics Generation with Large Language Models and Image Diffusion Models [14.917583676464266]
Chat2SVGは大規模言語モデルと画像拡散モデルを組み合わせたハイブリッドフレームワークである。
本システムにより,自然言語による直感的な編集が可能となり,プロのベクトルグラフィックス作成が可能となった。
論文 参考訳(メタデータ) (2024-11-25T17:31:57Z) - Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision [20.325246638505714]
本稿では,GRIMOIREというテキスト誘導型生成モデルを紹介し,画像をベクトル形状に再構成して離散コードブックにマッピングする方法を提案する。
データから直接の監視を必要とする既存のモデルとは異なり、GRIMOIREはベクトル生成モデリングをはるかに多くのデータに開放するイメージ監督のみを使用して学習する。
論文 参考訳(メタデータ) (2024-10-08T12:41:31Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
SVGDreamerと呼ばれる新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
SIVEプロセスは、前景オブジェクトと背景への合成の分解を可能にする。
VPSDアプローチは、形状の平滑化、彩度の過飽和、多様性の制限、収束の遅い問題に対処する。
論文 参考訳(メタデータ) (2023-12-27T08:50:01Z) - Text-Guided Vector Graphics Customization [31.41266632288932]
テキストのプロンプトに基づいて高品質なベクトルグラフィックスを生成する新しいパイプラインを提案する。
提案手法は,大規模な事前学習されたテキスト・ツー・イメージ・モデルの能力を利用する。
我々は,ベクトルレベル,画像レベル,テキストレベルの観点から,複数の指標を用いて評価を行った。
論文 参考訳(メタデータ) (2023-09-21T17:59:01Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
シーン内の車両の動きを予想することは、安全な自動運転システムにとって重要な問題である。
この目的のために、シーンのインフラの理解は、しばしば将来の軌跡を予測する主要な手がかりである。
提案手法のほとんどが逆逆変換方式のシーンを表現しており、近年のアプローチではカスタムベクトル化方式が採用されている。
論文 参考訳(メタデータ) (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
本稿では,複雑なSVGアイコンの生成と操作のために,DeepSVGと呼ばれる新しい階層型生成ネットワークを提案する。
我々のアーキテクチャは、その形状自体をエンコードする低レベルのコマンドから、効果的に高レベルの形状を分離します。
我々のネットワークは、多様なベクトルグラフィックスを正確に再構築し、強力なアニメーションツールとして機能することを実証する。
論文 参考訳(メタデータ) (2020-07-22T09:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。