Reinforcement Learning Based Quantum Circuit Optimization via ZX-Calculus
- URL: http://arxiv.org/abs/2312.11597v4
- Date: Thu, 22 May 2025 15:06:26 GMT
- Title: Reinforcement Learning Based Quantum Circuit Optimization via ZX-Calculus
- Authors: Jordi Riu, Jan Nogué, Gerard Vilaplana, Artur Garcia-Saez, Marta P. Estarellas,
- Abstract summary: We propose a novel Reinforcement Learning (RL) method for optimizing quantum circuits using graph-theoretic simplification rules of ZX-diagrams.<n>We demonstrate the capacity of our approach by comparing it against the best performing ZX-Calculus-based algorithm for the problem in hand.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel Reinforcement Learning (RL) method for optimizing quantum circuits using graph-theoretic simplification rules of ZX-diagrams. The agent, trained using the Proximal Policy Optimization (PPO) algorithm, employs Graph Neural Networks to approximate the policy and value functions. We demonstrate the capacity of our approach by comparing it against the best performing ZX-Calculus-based algorithm for the problem in hand. After training on small Clifford+T circuits of 5-qubits and few tenths of gates, the agent consistently improves the state-of-the-art for this type of circuits, for at least up to 80-qubit and 2100 gates, whilst remaining competitive in terms of computational performance. Additionally, we illustrate the versatility of the agent by incorporating additional optimization routines on the workflow during training, improving the two-qubit gate count state-of-the-art on multiple structured quantum circuits for relevant applications of much larger dimension and different gate distributions than the circuits the agent trains on. This conveys the potential of tailoring the reward function to the specific characteristics of each application and hardware backend. Our approach is a valuable tool for the implementation of quantum algorithms in the near-term intermediate-scale range (NISQ).
Related papers
- OrQstrator: An AI-Powered Framework for Advanced Quantum Circuit Optimization [3.9134031118910264]
OrQstrator is a modular framework for conducting quantum circuit optimization in the Noisy Intermediate-Scale Quantum (NISQ) era.<n>Our framework is powered by Deep Reinforcement Learning (DRL)
arXiv Detail & Related papers (2025-07-13T15:38:39Z) - CutQAS: Topology-aware quantum circuit cutting via reinforcement learning [0.0]
We propose CutQAS, a framework that integrates quantum circuit cutting with quantum architecture search (QAS) to enhance quantum chemistry simulations.<n>First, an RL agent explores all possible topologies to identify an optimal circuit structure. Subsequently, a second RL agent refines the selected topology by determining optimal circuit cuts, ensuring efficient execution on constrained hardware.
arXiv Detail & Related papers (2025-04-05T13:13:50Z) - Optimizing Quantum Circuits via ZX Diagrams using Reinforcement Learning and Graph Neural Networks [38.499527873574436]
We introduce a framework based on ZX calculus, graph-neural networks and reinforcement learning for quantum circuit optimization.
By combining reinforcement learning and tree search, our method addresses the challenge of selecting optimal sequences of ZX calculus rewrite rules.
We demonstrate our method's competetiveness with state-of-the-art circuit generalizations and capabilities on large sets of diverse random circuits.
arXiv Detail & Related papers (2025-04-04T13:19:08Z) - Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits.
All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
arXiv Detail & Related papers (2024-08-22T17:48:53Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Optimization at the Interface of Unitary and Non-unitary Quantum
Operations in PCOAST [0.3496513815948205]
Pauli-based Circuit Optimization, Analysis and Synthesis Toolchain (PCOAST) introduced as framework for optimizing quantum circuits.
In this paper, we focus on the set of subroutines which look to optimize the PCOAST graph in cases involving unitary and non-unitary operations.
We evaluate the PCOAST optimization subroutines using the Intel Quantum SDK on examples of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-05-16T22:58:14Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Hybrid quantum-classical circuit simplification with the ZX-calculus [0.0]
This work uses an extension of the formal graphical ZX-calculus called ZX-ground as an intermediary representation of the hybrid circuits.
We derive a number of gFlow-preserving optimization rules for ZX-ground diagrams that reduce the size of the graph.
We present a general procedure for detecting segments of circuit-like ZX-ground diagrams which can be implemented with classical gates in the extracted circuit.
arXiv Detail & Related papers (2021-09-13T15:45:56Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.