Universal structure of measurement-induced information in many-body ground states
- URL: http://arxiv.org/abs/2312.11615v2
- Date: Wed, 8 May 2024 14:57:04 GMT
- Title: Universal structure of measurement-induced information in many-body ground states
- Authors: Zihan Cheng, Rui Wen, Sarang Gopalakrishnan, Romain Vasseur, Andrew C. Potter,
- Abstract summary: We study measures of measurement-induced entanglement (MIE) and information (MII) for the ground-states of quantum many-body systems.
We argue that, whereas in $1d$ the leading contributions to long-range MIE and MII are universal, in $2d$, the existence of a teleportation transition implies that trivial $2d$ states can exhibit long-range MIE.
- Score: 1.0621665950143144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike unitary dynamics, measurements of a subsystem can induce long-range entanglement via quantum teleportation. The amount of measurement-induced entanglement or mutual information depends jointly on the measurement basis and the entanglement structure of the state (before measurement), and has operational significance for whether the state is a resource for measurement-based quantum computing, as well as for the computational complexity of simulating the state using quantum or classical computers. In this work, we examine entropic measures of measurement-induced entanglement (MIE) and information (MII) for the ground-states of quantum many-body systems in one- and two- spatial dimensions. From numerical and analytic analysis of a variety of models encompassing critical points, quantum Hall states, string-net topological orders, and Fermi liquids, we identify universal features of the long-distance structure of MIE and MII that depend only on the underlying phase or critical universality class of the state. We argue that, whereas in $1d$ the leading contributions to long-range MIE and MII are universal, in $2d$, the existence of a teleportation transition for finite-depth circuits implies that trivial $2d$ states can exhibit long-range MIE, and the universal features lie in sub-leading corrections. We introduce modified MIE measures that directly extract these universal contributions. As a corollary, we show that the leading contributions to strange-correlators, used to numerically identify topological phases, are in fact non-universal in two or more dimensions, and explain how our modified constructions enable one to isolate universal components. We discuss the implications of these results for classical- and quantum- computational simulation of quantum materials.
Related papers
- Long-range multipartite entanglement near measurement-induced transitions [0.0]
We investigate the multipartite entanglement structure that emerges in quantum circuits involving unitaries and measurements.
We show how a balance between measurements and unitary evolution can lead to multipartite entanglement spreading to distances far greater than what is found in non-monitored systems.
arXiv Detail & Related papers (2024-04-24T18:00:01Z) - Nonlocal growth of quantum conditional mutual information under decoherence [5.062448779099901]
Local measurements cannot create entanglement, but they can convert short-range entanglement to long-range entanglement.
We situate measurement-induced entanglement (MIE) in a broader context of the growth of long-range conditional mutual information (CMI) under decoherence.
arXiv Detail & Related papers (2024-02-05T19:00:06Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Informationally complete measures of quantum entanglement [0.0]
We introduce a family of entanglement measures which are given by the complete eigenvalues of the reduced density matrices of the system.
It is demonstrated that such ICEMs can characterize finer and distinguish better the entanglement than existing well-known entanglement measures.
arXiv Detail & Related papers (2022-06-22T19:27:07Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.