論文の概要: Complex Time Evolution in Tensor Networks
- arxiv url: http://arxiv.org/abs/2312.11705v1
- Date: Mon, 18 Dec 2023 21:04:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 17:44:48.680408
- Title: Complex Time Evolution in Tensor Networks
- Title(参考訳): テンソルネットワークにおける複素時間発展
- Authors: M. Grundner, P. Westhoff, F. B. Kugler, O. Parcollet and U.
Schollw\"ock
- Abstract要約: テンソルネットワークにおけるリアルタイム計算は、絡み合い成長によって時間的に強く制限される。
複素平面の輪郭まで時間発展を延長することにより、絡み合いの増大を削減し、数値的に効率的な高精度な計算を可能にする。
行列積状態を用いた単一不純物アンダーソンモデルと3バンドハバード・カナモリモデルとドウリン・ナラトモデルの例をベンチマークした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time calculations in tensor networks are strongly limited in time by
entanglement growth, restricting the achievable frequency resolution of Green's
functions, spectral functions, self-energies, and other related quantities. By
extending the time evolution to contours in the complex plane, entanglement
growth is curtailed, enabling numerically efficient high-precision calculations
of time-dependent correlators and Green's functions with detailed frequency
resolution. Various approaches to time evolution in the complex plane and the
required post-processing for extracting the pure real-time and frequency
information are compared. We benchmark our results on the examples of the
single-impurity Anderson model using matrix-product states and of the
three-band Hubbard-Kanamori and Dworin-Narath models using a tree tensor
network. Our findings indicate that the proposed methods are also applicable to
challenging realistic calculations of materials.
- Abstract(参考訳): テンソルネットワークにおけるリアルタイム計算は、エンタングルメント成長によって時間的に強く制限され、グリーン関数、スペクトル関数、自己エネルギー、その他の関連する量の達成可能な周波数分解能を制限する。
複素平面の輪郭に時間発展を拡大することにより、絡み合いの増大を削減し、時間依存型相関器とグリーン関数の数値的に効率的な高精度計算を可能にする。
複素平面における時間発展への様々なアプローチと、純粋な実時間情報と周波数情報を抽出するのに必要な後処理を比較した。
本研究では, 行列生成状態を用いた単重性アンダーソンモデルと, ツリーテンソルネットワークを用いた3バンドハバード・カナモリモデル, dworin-narathモデルについて評価を行った。
提案手法は,材料の現実的な計算にも応用できることが示唆された。
関連論文リスト
- Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
論文 参考訳(メタデータ) (2024-04-28T14:05:13Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
グラフニューラルネットワーク(GNN)は、しばしば予測アーキテクチャのコアコンポーネントである。
ほとんどの時間前GNNでは、計算複雑性はグラフ内のリンクの回数のシーケンスの長さの2乗係数までスケールする。
本稿では,時間的・空間的両方のダイナミックスを効率的に符号化するスケーラブルなアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-14T09:47:38Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
複数の解像度で抽出できる新しい時間・時間的畳み込みブロックを提案する。
提案するブロックは軽量で,任意の3D-CNNアーキテクチャに統合可能である。
論文 参考訳(メタデータ) (2020-11-08T10:40:26Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。