論文の概要: Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps
- arxiv url: http://arxiv.org/abs/2407.00011v1
- Date: Sun, 28 Apr 2024 14:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:48:25.039763
- Title: Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps
- Title(参考訳): コーディネートとフローマップの深層学習を用いたマルチスケールシステムの計算効率向上
- Authors: Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, Mohammad Abid Bazaz,
- Abstract要約: 本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complex systems often show macroscopic coherent behavior due to the interactions of microscopic agents like molecules, cells, or individuals in a population with their environment. However, simulating such systems poses several computational challenges during simulation as the underlying dynamics vary and span wide spatiotemporal scales of interest. To capture the fast-evolving features, finer time steps are required while ensuring that the simulation time is long enough to capture the slow-scale behavior, making the analyses computationally unmanageable. This paper showcases how deep learning techniques can be used to develop a precise time-stepping approach for multiscale systems using the joint discovery of coordinates and flow maps. While the former allows us to represent the multiscale dynamics on a representative basis, the latter enables the iterative time-stepping estimation of the reduced variables. The resulting framework achieves state-of-the-art predictive accuracy while incurring lesser computational costs. We demonstrate this ability of the proposed scheme on the large-scale Fitzhugh Nagumo neuron model and the 1D Kuramoto-Sivashinsky equation in the chaotic regime.
- Abstract(参考訳): 複雑な系は、分子、細胞、あるいは個体が環境と相互作用するため、しばしばマクロなコヒーレントな振る舞いを示す。
しかし、そのようなシステムのシミュレーションは、基礎となる力学が変化し、幅広い時空間スケールの興味をひくため、シミュレーション中にいくつかの計算上の課題を生じさせる。
高速に進化する特徴を捉えるためには、シミュレーション時間が遅い振る舞いを捉えるのに十分な長さであることを確保しつつ、より詳細な時間ステップが必要である。
本稿では,座標とフローマップの連成探索を用いて,マルチスケールシステムのための高精度なタイムステッピング手法を開発するために,ディープラーニング技術をどのように利用することができるかを示す。
前者は代表的ベースでマルチスケールのダイナミクスを表現できるが、後者は減算された変数の反復的なタイムステッピング推定を可能にする。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
大規模フィッツヒュー・ナグモニューロンモデルとカオス状態における1次元倉本・シヴァシンスキー方程式に関する提案手法の有効性を実証する。
関連論文リスト
- Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Hierarchical deep learning-based adaptive time-stepping scheme for
multiscale simulations [0.0]
本研究では,ディープニューラルネットワークを用いたマルチスケール問題のシミュレーション手法を提案する。
ニューラルネットワークのタイムステッパーの階層的学習を活用することで、タイムスケールにわたる動的システムフローマップの近似に時間ステップを適用する。
このアプローチは、固定ステップニューラルネットワークソルバと比較して計算時間が少なくて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-11-10T09:47:58Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
論文 参考訳(メタデータ) (2022-05-05T13:33:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。