論文の概要: An Effective Image Copy-Move Forgery Detection Using Entropy Information
- arxiv url: http://arxiv.org/abs/2312.11793v2
- Date: Tue, 30 Apr 2024 04:38:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:28:13.278791
- Title: An Effective Image Copy-Move Forgery Detection Using Entropy Information
- Title(参考訳): エントロピー情報を用いた効率的な画像コピー・モーブ偽造検出
- Authors: Li Jiang, Zhaowei Lu,
- Abstract要約: 本稿ではエントロピー画像を導入し,スケール不変特徴変換検出器に基づくキーポイントの座標とスケールを決定する。
重なり合うエントロピーレベルのクラスタリングアルゴリズムは、キーポイントにおける灰色の値の非理想分布に起因するマッチング複雑性の増大を軽減するために開発された。
- 参考スコア(独自算出の注目度): 5.882089693239905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.
- Abstract(参考訳): 画像鑑定は私たちの日常生活においてますます重要になっている。
様々な種類の偽造品の中で、コピー・ムーブ偽造検出は学術界でかなりの注目を集めている。
キーポイントベースのアルゴリズム、特にスケール不変の特徴変換に基づくアルゴリズムは、有望な結果を得た。
しかし、キーポイント検出アルゴリズムのほとんどは、スムーズな領域で改ざんされたパッチが発生したときに十分なマッチを生成できなかったため、一致が不十分になった。
そこで,本研究では,キーポイントの座標とスケールを決定するためにエントロピー画像を導入し,上記の問題を解決するために,前処理をより適したスケール不変特徴変換検出器を提案する。
さらに,鍵点における灰色の値の非理想分布に起因するマッチング複雑性の増大を軽減するために,重なり合うエントロピーレベルクラスタリングアルゴリズムを開発した。
実験結果から,本アルゴリズムは性能と時間効率のバランスが良好であることが示された。
関連論文リスト
- HomoMatcher: Dense Feature Matching Results with Semi-Dense Efficiency by Homography Estimation [39.48940223810725]
画像ペア間の特徴マッチングは、SLAMのような多くのアプリケーションを駆動するコンピュータビジョンの基本的な問題である。
本稿では,セミセンスマッチングフレームワークにおけるファインマッチングモジュールの強化に焦点をあてる。
我々は、粗いマッチングから得られたパッチ間の視点マッピングを生成するために、軽量で効率的なホモグラフィ推定ネットワークを用いる。
論文 参考訳(メタデータ) (2024-11-11T04:05:12Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm [10.135979083516174]
画像コピー-ムーブ(英: Image copy-move)は、画像の一部が同じ画像の別の部分に置き換えられる操作であり、違法な目的に使用できる。
近年の研究では、キーポイントに基づくアルゴリズムは、優れた、ロバストなローカライゼーション性能を達成している。
しかし、入力画像が低解像度である場合、既存のキーポイントベースのアルゴリズムのほとんどは、十分なキーポイントを生成するのが困難である。
論文 参考訳(メタデータ) (2024-06-05T13:50:29Z) - Deep Hashing via Householder Quantization [3.106177436374861]
ハッシュは大規模な画像類似検索の中心にある。
一般的な解決策は、類似性学習項と量子化ペナルティ項を組み合わせた損失関数を採用することである。
本稿では,学習問題を2段階に分解する量子化戦略を提案する。
論文 参考訳(メタデータ) (2023-11-07T18:47:28Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
変換器を用いたカスケードマッチングモデル -- Cascade Feature Matching TRansformer (CasMTR) を提案する。
我々は、信頼性マップを通じてキーポイントをフィルタリングするために、単純で効果的な非最大抑圧(NMS)後処理を使用する。
CasMTRは、室内および屋外のポーズ推定および視覚的位置推定において最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-03-06T04:32:34Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
粗大な処理で対応性を見出すことにより、ECO-TR(Correspondence Efficient Transformer)と呼ばれる効率的な構造を提案する。
これを実現するために、複数の変圧器ブロックは段階的に連結され、予測された座標を徐々に洗練する。
種々のスパースタスクと密マッチングタスクの実験は、既存の最先端技術に対する効率性と有効性の両方において、我々の手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-09-25T13:05:33Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
本研究では、因果的視点と不変表現を学習するための新しいアルゴリズムを提供する。
実験により,このアルゴリズムは様々なタスク群でうまく動作し,特にドメインの一般化における最先端のパフォーマンスを観察する。
論文 参考訳(メタデータ) (2022-06-23T12:06:54Z) - FFD: Fast Feature Detector [22.51804239092462]
特定のスケール空間領域にロバストで正確なキーポイントが存在することを示す。
スケールスペースピラミッドの滑らか度比とぼかしをそれぞれ2と0.627に設定することで、信頼性の高いキーポイントの検出が容易であることが証明された。
論文 参考訳(メタデータ) (2020-12-01T21:56:35Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。