論文の概要: MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
- arxiv url: http://arxiv.org/abs/2312.11841v1
- Date: Tue, 19 Dec 2023 04:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 16:58:07.709350
- Title: MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
- Title(参考訳): MixRT:リアルタイムNeRFレンダリングのための混合ニューラル表現
- Authors: Chaojian Li, Bichen Wu, Peter Vajda, Yingyan (Celine) Lin
- Abstract要約: 我々は、低品質メッシュ、ビュー依存変位マップ、圧縮されたNeRFモデルを含む新しいNeRF表現であるMixRTを提案する。
この設計は、既存のグラフィックスハードウェアの能力を効果的に活用し、エッジデバイス上でリアルタイムのNeRFレンダリングを可能にする。
- 参考スコア(独自算出の注目度): 24.040636076067393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Field (NeRF) has emerged as a leading technique for novel
view synthesis, owing to its impressive photorealistic reconstruction and
rendering capability. Nevertheless, achieving real-time NeRF rendering in
large-scale scenes has presented challenges, often leading to the adoption of
either intricate baked mesh representations with a substantial number of
triangles or resource-intensive ray marching in baked representations. We
challenge these conventions, observing that high-quality geometry, represented
by meshes with substantial triangles, is not necessary for achieving
photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF
representation that includes a low-quality mesh, a view-dependent displacement
map, and a compressed NeRF model. This design effectively harnesses the
capabilities of existing graphics hardware, thus enabling real-time NeRF
rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering
framework, our proposed MixRT attains real-time rendering speeds on edge
devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop),
better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360
datasets), and a smaller storage size (less than 80% compared to
state-of-the-art methods).
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は、その印象的なフォトリアリスティックな再構成とレンダリング能力により、新しいビュー合成の先駆的な技術として登場した。
それでも、大規模なシーンでリアルタイムのNeRFレンダリングを実現することは課題を示しており、しばしば、相当数の三角形を持つ複雑な焼成メッシュ表現や、焼成表現におけるリソース集約光線マーチングの採用につながっている。
我々はこれらの慣習に挑戦し、実質的な三角形を持つメッシュで表される高品質な幾何学は、フォトリアリスティックなレンダリング品質を達成するために必要ではないと観察する。
その結果、低品質メッシュ、ビュー依存変位マップ、圧縮されたNeRFモデルを含む新しいNeRF表現であるMixRTを提案する。
この設計は、既存のグラフィックスハードウェアの機能を活用し、エッジデバイス上でリアルタイムのNeRFレンダリングを可能にする。
高度に最適化されたwebglベースのレンダリングフレームワークを利用することで、mixrtはエッジデバイス(macbook m1 proラップトップで解像度180 x 720で30fps以上)でリアルタイムレンダリング速度を実現し、レンダリング品質(非バウンド360データセットの屋内シーンでは0.2psnr)、ストレージサイズ(最先端のメソッドと比較して80%未満)を向上した。
関連論文リスト
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
ニューラル放射場は、最先端のビュー合成品質を提供するが、レンダリングが遅くなる傾向がある。
本稿では,ほとんどの物体を表面としてレンダリングすることで,両表現の強みを生かしたHybridNeRFを提案する。
仮想現実分解能(2Kx2K)のリアルタイムフレームレート(少なくとも36FPS)を達成しながら、エラー率を15~30%改善する。
論文 参考訳(メタデータ) (2023-12-05T22:04:49Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
我々は、劣化駆動の視点間ミキサーを学習する一般的なNeRF-Agnostic restorerパラダイムであるNeRFLiXを提案する。
また、より強力な2段階のNeRF分解シミュレータとより高速なビューポイントミキサーを備えたNeRFLiX++を提案する。
NeRFLiX++は、ノイズの多い低解像度のNeRFレンダリングビューからフォトリアリスティックな超高解像度出力を復元することができる。
論文 参考訳(メタデータ) (2023-06-10T09:19:19Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic
Reconstruction of Indoor Scenes [17.711755550841385]
SLAMに基づく手法は、3Dシーンの形状をリアルタイムで段階的に再構成することができるが、フォトリアリスティックな結果を描画することはできない。
NeRFベースの手法は、将来有望な新しいビュー合成結果を生成し、その長いオフライン最適化時間と幾何的制約の欠如は、オンライン入力を効率的に処理する上での課題となる。
本稿では、フレキシブルでスケーラブルなニューラルサーベイル表現を用いて、入力画像から幾何学的属性と外観特徴を抽出するSurfelNeRFを紹介する。
論文 参考訳(メタデータ) (2023-04-18T13:11:49Z) - Re-ReND: Real-time Rendering of NeRFs across Devices [56.081995086924216]
Re-ReNDは、NeRFを標準グラフィックスパイプラインで効率的に処理できる表現に変換することで、リアルタイムのパフォーマンスを実現するように設計されている。
Re-ReNDはレンダリング速度が2.6倍に向上し、最先端技術では品質が損なわれることなく達成できることがわかった。
論文 参考訳(メタデータ) (2023-03-15T15:59:41Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
我々は,NeRF と TSDF をベースとした核融合技術の利点を組み合わせて,大規模再構築とフォトリアリスティックレンダリングを実現する手法であるNeRFusion を提案する。
我々は,大規模な屋内・小規模の両方の物体シーンにおいて,NeRFの最先端性を達成し,NeRFや他の最近の手法よりも大幅に高速に再現できることを実証した。
論文 参考訳(メタデータ) (2022-03-21T18:56:35Z) - Baking Neural Radiance Fields for Real-Time View Synthesis [41.07052395570522]
我々は、NeRFをトレーニングし、プリコンプリートし、保存する(すなわち)方法を提案する。
「ベイク」はスパースニューラルネットワーク放射格子(snerg)と呼ばれる新しい表現である。
結果として生じるシーン表現は、細かい幾何学的詳細とビュー依存の外観をレンダリングするNeRFの能力を保持し、コンパクトであり、リアルタイムでレンダリングすることができる。
論文 参考訳(メタデータ) (2021-03-26T17:59:52Z) - FastNeRF: High-Fidelity Neural Rendering at 200FPS [17.722927021159393]
我々は,ハイエンドGPU上で200Hzの高忠実度画像をレンダリングするシステムであるFastNeRFを提案する。
提案手法は、元のNeRFアルゴリズムよりも3000倍高速で、NeRFを加速する既存の作業よりも少なくとも1桁高速である。
論文 参考訳(メタデータ) (2021-03-18T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。