論文の概要: Growing Deep Neural Network Considering with Similarity between Neurons
- arxiv url: http://arxiv.org/abs/2408.13291v1
- Date: Fri, 23 Aug 2024 11:16:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 20:08:51.109909
- Title: Growing Deep Neural Network Considering with Similarity between Neurons
- Title(参考訳): ニューロン間の類似性を考慮したディープニューラルネットワークの育成
- Authors: Taigo Sakai, Kazuhiro Hotta,
- Abstract要約: 我々は、訓練段階におけるコンパクトモデルにおいて、ニューロン数を漸進的に増加させる新しいアプローチを探求する。
本稿では,ニューロン類似性分布に基づく制約を導入することにより,特徴抽出バイアスと神経冗長性を低減する手法を提案する。
CIFAR-10とCIFAR-100データセットの結果、精度が向上した。
- 参考スコア(独自算出の注目度): 4.32776344138537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has excelled in image recognition tasks through neural networks inspired by the human brain. However, the necessity for large models to improve prediction accuracy introduces significant computational demands and extended training times.Conventional methods such as fine-tuning, knowledge distillation, and pruning have the limitations like potential accuracy drops. Drawing inspiration from human neurogenesis, where neuron formation continues into adulthood, we explore a novel approach of progressively increasing neuron numbers in compact models during training phases, thereby managing computational costs effectively. We propose a method that reduces feature extraction biases and neuronal redundancy by introducing constraints based on neuron similarity distributions. This approach not only fosters efficient learning in new neurons but also enhances feature extraction relevancy for given tasks. Results on CIFAR-10 and CIFAR-100 datasets demonstrated accuracy improvement, and our method pays more attention to whole object to be classified in comparison with conventional method through Grad-CAM visualizations. These results suggest that our method's potential to decision-making processes.
- Abstract(参考訳): ディープラーニングは、人間の脳にインスパイアされたニューラルネットワークを通じて、画像認識タスクに優れています。
しかし, 予測精度を向上させるための大規模モデルの必要性は, 微調整, 知識蒸留, プルーニングといった従来の手法には, 潜在的な精度低下のような限界がある。
ニューロン形成が成体化し続けるヒト神経新生からインスピレーションを得て、訓練期間中にコンパクトモデルにおいてニューロン数を徐々に増加させる新しいアプローチを探索し、計算コストを効果的に管理する。
本稿では,ニューロン類似性分布に基づく制約を導入することにより,特徴抽出バイアスと神経冗長性を低減する手法を提案する。
このアプローチは、新しいニューロンにおける効率的な学習を促進するだけでなく、与えられたタスクに対する特徴抽出の関連性を高める。
CIFAR-10とCIFAR-100データセットの結果,精度が向上した。
これらの結果から,本手法が意思決定プロセスに応用できる可能性が示唆された。
関連論文リスト
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
本稿では,大きな基礎モデルを持つニューロンの意味的説明を生成するための,新しいポストホックフレームワークを提案する。
我々のフレームワークは、様々なモデルアーキテクチャやデータセット、自動化されたスケーラブルなニューロン解釈と互換性があるように設計されています。
論文 参考訳(メタデータ) (2023-10-16T17:04:51Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of
Neural Responses [9.792408261365043]
我々は,小さな刺激応答対からニューロンのチューニング関数を推定するファクトリズ・ニューラル・プロセスを開発した。
本稿では,ニューラルプロセスからの予測および再構成された受容場が,試行数の増加とともに真理に近づいたことをシミュレートした応答を示す。
この新しいディープラーニングシステム識別フレームワークは、ニューラルネットワークモデリングを神経科学実験にリアルタイムに組み込むのに役立つと信じている。
論文 参考訳(メタデータ) (2020-10-22T15:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。