Accurate harmonic vibrational frequencies for diatomic molecules via
quantum computing
- URL: http://arxiv.org/abs/2312.12320v1
- Date: Tue, 19 Dec 2023 16:44:49 GMT
- Title: Accurate harmonic vibrational frequencies for diatomic molecules via
quantum computing
- Authors: Shih-Kai Chou, Jyh-Pin Chou, Alice Hu, Yuan-Chung Cheng and Hsi-Sheng
Goan
- Abstract summary: We propose a promising qubit-efficient quantum computational approach to calculate the harmonic vibrational frequencies of a set of neutral closed-shell diatomic molecules.
We show that the variational quantum circuit with the chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact diagonalization method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the noisy intermediate-scale quantum (NISQ) era, quantum computational
approaches refined to overcome the challenge of limited quantum resources are
highly valuable. However, the accuracy of the molecular properties predicted by
most of the quantum computations nowadays is still far off (not within chemical
accuracy) compared to their corresponding experimental data. Here, we propose a
promising qubit-efficient quantum computational approach to calculate the
harmonic vibrational frequencies of a large set of neutral closed-shell
diatomic molecules with results in great agreement with their experimental
data. To this end, we construct the accurate Hamiltonian using molecular
orbitals, derived from density functional theory to account for the electron
correlation and expanded in the Daubechies wavelet basis set to allow an
accurate representation in real space grid points, where an optimized compact
active space is further selected so that only a reduced small number of qubits
is sufficient to yield an accurate result. To justify the approach, we
benchmark the performance of the Hamiltonians spanned by the selected molecular
orbitals by first transforming the molecular Hamiltonians into qubit
Hamiltonians and then using the exact diagonalization method to calculate the
results, regarded as the best results achievable by quantum computation.
Furthermore, we show that the variational quantum circuit with the
chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact
diagonalization method except for systems whose Mayer bond order indices are
larger than 2. For those systems, we demonstrate that the heuristic
hardware-efficient RealAmplitudes ansatz, even with a shorter circuit depth,
can provide a significant improvement over the UCCSD ansatz, verifying that the
harmonic vibrational frequencies could be calculated accurately by quantum
computation in the NISQ era.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Ab initio extended Hubbard model of short polyenes for efficient quantum computing [0.0]
We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method.
The ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
arXiv Detail & Related papers (2024-04-02T04:13:09Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Proof-of-concept Quantum Simulator based on Molecular Spin Qudits [39.28601213393797]
We show the first prototype quantum simulator based on an ensemble of molecular qudits and a radiofrequency broadband spectrometer.
Results represent an important step towards the actual use of molecular spin qudits in quantum technologies.
arXiv Detail & Related papers (2023-09-11T16:33:02Z) - Quantum Computation and Simulation using Fermion-Pair Registers [0.0]
We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes.
We describe how to engineer the SWAP gate and high-fidelity controlled-phase gates.
We show that 2D quantum Ising Hamiltonians with transverse and longitudinal fields can be efficient simulated by modulating Feshbach interaction strengths.
arXiv Detail & Related papers (2023-06-06T17:59:08Z) - Accurate and Efficient Quantum Computations of Molecular Properties
Using Daubechies Wavelet Molecular Orbitals: A Benchmark Study against
Experimental Data [5.086494083782608]
We show that a minimal basis set constructed from Daubechies wavelet basis can yield accurate results through a better description of the molecular Hamiltonian.
Our work provides a more efficient and accurate representation of the molecular Hamiltonian for efficient QCs of molecular systems.
arXiv Detail & Related papers (2022-05-28T16:22:18Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.