論文の概要: Learning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer
- arxiv url: http://arxiv.org/abs/2312.12467v2
- Date: Fri, 15 Mar 2024 12:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 22:33:38.359896
- Title: Learning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer
- Title(参考訳): 階層型コンタクトメッシュ変換器を用いたフレキシブルボディ衝突ダイナミクスの学習
- Authors: Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, Chang-Seung Woo, Ilho Kim, Seok-Woo Lee, Joon-Young Yang, Sooyoung Yoon, Noseong Park,
- Abstract要約: 階層型メッシュ構造を用いて長距離依存を学習可能な階層型コンタクトメッシュトランス(HCMT)を提案する。
HCMTは長距離相互作用を可能にし、階層メッシュ構造はすぐに遠くの位置への衝突効果を伝播させる。
- 参考スコア(独自算出の注目度): 19.042551780033765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many mesh-based graph neural network (GNN) models have been proposed for modeling complex high-dimensional physical systems. Remarkable achievements have been made in significantly reducing the solving time compared to traditional numerical solvers. These methods are typically designed to i) reduce the computational cost in solving physical dynamics and/or ii) propose techniques to enhance the solution accuracy in fluid and rigid body dynamics. However, it remains under-explored whether they are effective in addressing the challenges of flexible body dynamics, where instantaneous collisions occur within a very short timeframe. In this paper, we present Hierarchical Contact Mesh Transformer (HCMT), which uses hierarchical mesh structures and can learn long-range dependencies (occurred by collisions) among spatially distant positions of a body -- two close positions in a higher-level mesh corresponds to two distant positions in a lower-level mesh. HCMT enables long-range interactions, and the hierarchical mesh structure quickly propagates collision effects to faraway positions. To this end, it consists of a contact mesh Transformer and a hierarchical mesh Transformer (CMT and HMT, respectively). Lastly, we propose a flexible body dynamics dataset, consisting of trajectories that reflect experimental settings frequently used in the display industry for product designs. We also compare the performance of several baselines using well-known benchmark datasets. Our results show that HCMT provides significant performance improvements over existing methods. Our code is available at \url{https://github.com/yuyudeep/hcmt}.
- Abstract(参考訳): 近年、複雑な高次元物理系をモデル化するためのメッシュベースグラフニューラルネットワーク(GNN)モデルが多数提案されている。
従来の数値解法と比較して解法時間を大幅に短縮する顕著な成果が得られた。
これらの手法は典型的には
一 物理力学の解法及び/又は解法における計算コストの低減
二 流体力学及び剛体力学における解の精度を高める技術を提案すること。
しかし、非常に短い時間枠内で瞬時に衝突が起こるフレキシブルボディダイナミクスの課題に取り組むのに効果があるかどうかはまだ解明されていない。
本稿では,階層型メッシュ構造を用いた階層型コンタクトメッシュトランス (HCMT) を提案する。
HCMTは長距離相互作用を可能にし、階層メッシュ構造はすぐに遠くの位置への衝突効果を伝播させる。
この目的のために、コンタクトメッシュ変換器と階層メッシュ変換器(それぞれCMTとHMT)で構成される。
最後に,製品デザインの表示業界で頻繁に使用される実験的な設定を反映したトラジェクトリからなるフレキシブルボディダイナミックスデータセットを提案する。
また、よく知られたベンチマークデータセットを用いて、いくつかのベースラインのパフォーマンスを比較する。
その結果,HCMTは既存の手法に比べて大幅な性能向上を実現していることがわかった。
私たちのコードは \url{https://github.com/yuyudeep/hcmt} で利用可能です。
関連論文リスト
- Discovering Message Passing Hierarchies for Mesh-Based Physics Simulation [61.89682310797067]
DHMPを導入し,異なるノード選択手法を用いてメッセージパッシングネットワークの動的階層を学習する。
本実験はDHMPの有効性を実証し,近年の固定階層型メッセージパッシングネットワークと比較して平均22.7%改善した。
論文 参考訳(メタデータ) (2024-10-03T15:18:00Z) - Towards Universal Mesh Movement Networks [13.450178050669964]
我々はUniversal Mesh Movement Network (UM2N)を紹介する。
UM2Nは、異なるサイズ分布と構造を持つメッシュを動かすために、非侵入的ゼロショット方式で適用することができる。
本研究では, 実世界の津波シミュレーション事例とともに, 対流法とナビエ・ストークス法に基づく実例について検討した。
論文 参考訳(メタデータ) (2024-06-29T09:35:12Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
データ駆動サロゲートモデリングは、高忠実度数値シミュレータの安価な代替手段を提供する。
CNNは偏微分方程式の解を近似するのに強力であるが、CNNが不規則かつ非構造的なシミュレーションメッシュを扱うことは依然として困難である。
グラフ畳み込みネットワーク(GCN)に基づく代理モデルを構築し,多相流と多孔質媒体の輸送過程の時空間解を近似する。
論文 参考訳(メタデータ) (2023-07-10T09:59:35Z) - Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific
Tensor Decomposition [7.221206118679026]
そこで我々は,Mixed-TDと呼ばれるテンソル分解法に基づいて,CNNをFPGAにマッピングするフレームワークを提案する。
提案手法は,DSP毎の1.73倍から10.29倍のスループットを最先端CNNに適用し,層固有特異値分解(SVD)とカノニカルポリアディック分解(CPD)を混合的に適用する。
論文 参考訳(メタデータ) (2023-06-08T08:16:38Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
流体力学を推定することは、解決するのが非常に難しい。
問題に対する新しいモデル,メソッド,ベンチマークを導入する。
我々の変換器は、既存の合成データセットと実際のデータセットの両方において、最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:59:08Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
ASFD(Automatic and Scalable Face Detector)を提案する。
ASFDはニューラルアーキテクチャ検索技術の組み合わせと新たな損失設計に基づいている。
ASFD-D0は120FPS以上で動作し、MobilenetはVGA解像度の画像を撮影しています。
論文 参考訳(メタデータ) (2020-03-25T06:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。